Environment characterization using Laplace eigenvalues

E. Mihankhah, Danwei W. Wang
{"title":"Environment characterization using Laplace eigenvalues","authors":"E. Mihankhah, Danwei W. Wang","doi":"10.1109/ICARCV.2016.7838769","DOIUrl":null,"url":null,"abstract":"This paper introduces a new methodology for environment characterization. This methodology is based on analysis of the eigenvalues of Laplace-Beltrami operator over 3 dimensional point clouds. Recognizing revisited places can be facilitated by characterizing the environment through a descriptor. The idea of analyzing point clouds using the eigenvalues of Laplace-Beltrami operator for characterization of an environment can be used for place detection which is a critical functionality of autonomous mobile robots. Place detection is a requirement for transition detection in multi environment missions, common frame identification in multi robot mapping, and detection of previously visited location in SLAM for loop closure phase.","PeriodicalId":128828,"journal":{"name":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2016.7838769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a new methodology for environment characterization. This methodology is based on analysis of the eigenvalues of Laplace-Beltrami operator over 3 dimensional point clouds. Recognizing revisited places can be facilitated by characterizing the environment through a descriptor. The idea of analyzing point clouds using the eigenvalues of Laplace-Beltrami operator for characterization of an environment can be used for place detection which is a critical functionality of autonomous mobile robots. Place detection is a requirement for transition detection in multi environment missions, common frame identification in multi robot mapping, and detection of previously visited location in SLAM for loop closure phase.
利用拉普拉斯特征值进行环境表征
本文介绍了一种新的环境表征方法。该方法基于对三维点云上拉普拉斯-贝尔特拉米算子特征值的分析。通过描述符描述环境,可以方便地识别重访地点。利用拉普拉斯-贝尔特拉米算子的特征值分析点云来表征环境的思想可以用于位置检测,这是自主移动机器人的关键功能。位置检测是多环境任务中的过渡检测、多机器人测绘中的公共帧识别以及SLAM中闭环阶段的先前访问位置检测的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信