Estimating The Period Of A Pulse Train From A Noisy Measurements

I. Clarkson, S. Howard, I. Mareels
{"title":"Estimating The Period Of A Pulse Train From A Noisy Measurements","authors":"I. Clarkson, S. Howard, I. Mareels","doi":"10.1109/ISSPA.1996.615190","DOIUrl":null,"url":null,"abstract":"The problem of estimation of the period of a pulse train from a set of sparse, noisy measurements of the times-ofarrival, and the association of pulse indices with the measurements, is considered for a pair of statistical models of the measurement process. We find that the estimation and association problem can be formulated as a simultaneous Diophantine approximation problem. We propose an algorithm for obtaining estimates and associations based on the LLL algorithm [SI. We also show a relationship with the maximisation of a certain trigonometric sum, which can be regarded as the periodogram of the measurements. We present some numerical results which indicate that the algorithm is able to make correct associations of pulse indices, and therefore accurate estimates of the period, with very high probability even for very sparse, short and noisy records. This is demonstrated in examples in which 99.9% of pulses are missiig and as few as 9 pulses are recorded with average errors of up t o 1% of the period on each measurement and yet the experimental frequency of correct association was more than 99%.","PeriodicalId":359344,"journal":{"name":"Fourth International Symposium on Signal Processing and Its Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Symposium on Signal Processing and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1996.615190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of estimation of the period of a pulse train from a set of sparse, noisy measurements of the times-ofarrival, and the association of pulse indices with the measurements, is considered for a pair of statistical models of the measurement process. We find that the estimation and association problem can be formulated as a simultaneous Diophantine approximation problem. We propose an algorithm for obtaining estimates and associations based on the LLL algorithm [SI. We also show a relationship with the maximisation of a certain trigonometric sum, which can be regarded as the periodogram of the measurements. We present some numerical results which indicate that the algorithm is able to make correct associations of pulse indices, and therefore accurate estimates of the period, with very high probability even for very sparse, short and noisy records. This is demonstrated in examples in which 99.9% of pulses are missiig and as few as 9 pulses are recorded with average errors of up t o 1% of the period on each measurement and yet the experimental frequency of correct association was more than 99%.
从噪声测量中估计脉冲序列的周期
针对测量过程的一对统计模型,考虑了从一组稀疏的、有噪声的到达时间测量值中估计脉冲序列周期的问题,以及脉冲指数与测量值的关联问题。我们发现估计和关联问题可以表示为一个同时的丢番图近似问题。我们提出了一种基于LLL算法的估计和关联算法[SI]。我们还展示了与某个三角函数和的最大值的关系,它可以被视为测量的周期图。我们给出的一些数值结果表明,该算法能够正确地关联脉冲指数,因此即使对于非常稀疏、短和有噪声的记录,也能以很高的概率准确估计周期。这在99.9%的脉冲丢失的例子中得到了证明,只有9个脉冲被记录下来,每次测量的平均误差高达周期的1%,而正确关联的实验频率却超过99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信