RadCloud—An Artificial Intelligence-Based Research Platform Integrating Machine Learning-Based Radiomics, Deep Learning, and Data Management

Geng Yayuan, Zhang Fengyan, Zhang Ran, Chen Ying, Xiang Yuwei, Wang Fang, Yang Xunhong, Zuo Panli, Chai Xiangfei
{"title":"RadCloud—An Artificial Intelligence-Based Research Platform Integrating Machine Learning-Based Radiomics, Deep Learning, and Data Management","authors":"Geng Yayuan, Zhang Fengyan, Zhang Ran, Chen Ying, Xiang Yuwei, Wang Fang, Yang Xunhong, Zuo Panli, Chai Xiangfei","doi":"10.2991/jaims.d.210617.001","DOIUrl":null,"url":null,"abstract":"Radiomics and artificial intelligence (AI) are two rapidly advancing techniques in precision medicine for the purpose of dis- ease diagnosis, prognosis, surveillance, and personalized therapy. This paper introduces RadCloud, an artificial intelligent (AI) research platform that supports clinical studies. It integrates machine learning (ML)-based radiomics, deep learning (DL), and data management to simplify AI-based research, supporting rapid introduction of AI algorithms across various medical imaging specialties tomeettheever-increasingdemandsoffutureclinical research.Thisplatform hasbeen successfullyappliedfortumor detection, biomarker identification, prognosis, and treatment effect assessment across various image modalities (MR, PET/CT, CTA, US, MG, etc.) and a variety of organs (breast, lung, kidney, liver, rectum, thyroid, bone, etc). The proposed platform has shown great potential in supporting clinical studies for precision medicine.","PeriodicalId":196434,"journal":{"name":"Journal of Artificial Intelligence for Medical Sciences","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence for Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jaims.d.210617.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Radiomics and artificial intelligence (AI) are two rapidly advancing techniques in precision medicine for the purpose of dis- ease diagnosis, prognosis, surveillance, and personalized therapy. This paper introduces RadCloud, an artificial intelligent (AI) research platform that supports clinical studies. It integrates machine learning (ML)-based radiomics, deep learning (DL), and data management to simplify AI-based research, supporting rapid introduction of AI algorithms across various medical imaging specialties tomeettheever-increasingdemandsoffutureclinical research.Thisplatform hasbeen successfullyappliedfortumor detection, biomarker identification, prognosis, and treatment effect assessment across various image modalities (MR, PET/CT, CTA, US, MG, etc.) and a variety of organs (breast, lung, kidney, liver, rectum, thyroid, bone, etc). The proposed platform has shown great potential in supporting clinical studies for precision medicine.
radcloud -基于人工智能的研究平台,集成了基于机器学习的放射组学、深度学习和数据管理
放射组学和人工智能(AI)是精准医学中两种快速发展的技术,用于疾病诊断、预后、监测和个性化治疗。本文介绍了一个支持临床研究的人工智能(AI)研究平台RadCloud。它集成了基于机器学习(ML)的放射组学、深度学习(DL)和数据管理,以简化基于人工智能的研究,支持在各种医学成像专业中快速引入人工智能算法,以满足不断增长的临床研究需求。该平台已成功应用于各种图像方式(MR、PET/CT、CTA、US、MG等)和各种器官(乳腺、肺、肾、肝、直肠、甲状腺、骨等)的肿瘤检测、生物标志物鉴定、预后和治疗效果评估。该平台在支持精准医学临床研究方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信