Advances in Structural Vector Autoregressions with Imperfect Identifying Information

C. Baumeister, James D. Hamilton
{"title":"Advances in Structural Vector Autoregressions with Imperfect Identifying Information","authors":"C. Baumeister, James D. Hamilton","doi":"10.3386/w27014","DOIUrl":null,"url":null,"abstract":"This paper examines methods for structural interpretation of vector autoregressions when the identifying information is regarded as imperfect or incomplete. We suggest that a Bayesian approach offers a unifying theme for guiding inference in such settings. Among other advantages, the unified approach solves a problem with calculating elasticities that appears not to have been recognized by earlier researchers. We also call attention to some computational concerns of which researchers who approach this problem using other methods should be aware.","PeriodicalId":438941,"journal":{"name":"CEPR: International Macroeconomics & Finance (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEPR: International Macroeconomics & Finance (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3386/w27014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper examines methods for structural interpretation of vector autoregressions when the identifying information is regarded as imperfect or incomplete. We suggest that a Bayesian approach offers a unifying theme for guiding inference in such settings. Among other advantages, the unified approach solves a problem with calculating elasticities that appears not to have been recognized by earlier researchers. We also call attention to some computational concerns of which researchers who approach this problem using other methods should be aware.
不完全识别信息下结构向量自回归的研究进展
本文研究了当识别信息不完善或不完整时向量自回归的结构解释方法。我们建议贝叶斯方法为在这种情况下指导推理提供一个统一的主题。除其他优点外,统一的方法解决了计算弹性的问题,这似乎没有被早期的研究人员认识到。我们还呼吁注意使用其他方法处理该问题的研究人员应该注意的一些计算问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信