Selective SVM Ensembles Based on Modified BPSO

Hong-da Zhang, Xiao-dan Wang, Chong-ming Wu, Bo Ji, Hai-long Xu
{"title":"Selective SVM Ensembles Based on Modified BPSO","authors":"Hong-da Zhang, Xiao-dan Wang, Chong-ming Wu, Bo Ji, Hai-long Xu","doi":"10.1109/PACIIA.2008.111","DOIUrl":null,"url":null,"abstract":"Selective ensemble is effective for improve the classification performance through taking full advantage of the diversity and supplement between base classifiers. A BPSO (binary particle swarm optimization) based selective SVM ensemble approach is proposed to ensure the diversity and supplement among base classifiers in the training phase and high performance in the selection phase. Firstly, bootstrap method introduced by Bagging is employed to select the training set; secondly, SVMs are trained with hyper-parameters randomly selected from the space defined with respect to the distribution characteristics of data sets; thirdly, taking classification accuracy of selected ensemble as the optimization object, BPSO is applied to acquire the final selective ensemble. Experiments indicate that the proposed approach remarkably improves the classification accuracy with much less member classifiers compare to the whole ensemble.","PeriodicalId":275193,"journal":{"name":"IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIIA.2008.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Selective ensemble is effective for improve the classification performance through taking full advantage of the diversity and supplement between base classifiers. A BPSO (binary particle swarm optimization) based selective SVM ensemble approach is proposed to ensure the diversity and supplement among base classifiers in the training phase and high performance in the selection phase. Firstly, bootstrap method introduced by Bagging is employed to select the training set; secondly, SVMs are trained with hyper-parameters randomly selected from the space defined with respect to the distribution characteristics of data sets; thirdly, taking classification accuracy of selected ensemble as the optimization object, BPSO is applied to acquire the final selective ensemble. Experiments indicate that the proposed approach remarkably improves the classification accuracy with much less member classifiers compare to the whole ensemble.
基于改进BPSO的选择性支持向量机集成
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信