Millimeter-Wave GaN Device Modeling for Power Amplifiers

Y. Yamaguchi, K. Nakatani, K. Teo, S. Shinjo
{"title":"Millimeter-Wave GaN Device Modeling for Power Amplifiers","authors":"Y. Yamaguchi, K. Nakatani, K. Teo, S. Shinjo","doi":"10.1109/DRC50226.2020.9135149","DOIUrl":null,"url":null,"abstract":"Millimeter-wave (mm-wave) applications such as the satellite communication (Sat-com) system and the fifth-generation (5G) mobile communication system have attracted a great deal of attention. In the mm-wave applications, a GaN device which can obtain high power at mm-wave band is considered as one of the promising device for power amplifiers (PA) as shown in Fig. 1 [1] . In order to realize the attractive GaN PA, a GaN device model with high accuracy at mm-wave band is required for design of GaN PA. However, there are still some problems to obtain a large-signal model with high accuracy at mm-wave band. One of the problems is trapping effects under large-signal operation. Modeling of trapping effects on drain current and trans-conductance has been already reported in [2] .This paper presents a GaN device model including trapping effects on non-linear capacitance and a Ka-band high efficiency GaN Doherty PA designed by using the proposed model.","PeriodicalId":397182,"journal":{"name":"2020 Device Research Conference (DRC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC50226.2020.9135149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Millimeter-wave (mm-wave) applications such as the satellite communication (Sat-com) system and the fifth-generation (5G) mobile communication system have attracted a great deal of attention. In the mm-wave applications, a GaN device which can obtain high power at mm-wave band is considered as one of the promising device for power amplifiers (PA) as shown in Fig. 1 [1] . In order to realize the attractive GaN PA, a GaN device model with high accuracy at mm-wave band is required for design of GaN PA. However, there are still some problems to obtain a large-signal model with high accuracy at mm-wave band. One of the problems is trapping effects under large-signal operation. Modeling of trapping effects on drain current and trans-conductance has been already reported in [2] .This paper presents a GaN device model including trapping effects on non-linear capacitance and a Ka-band high efficiency GaN Doherty PA designed by using the proposed model.
功率放大器的毫米波GaN器件建模
卫星通信(Sat-com)系统和第五代(5G)移动通信系统等毫米波(mm-wave)应用引起了极大的关注。在毫米波应用中,可以在毫米波波段获得高功率的GaN器件被认为是功率放大器(PA)的有前途的器件之一,如图1[1]所示。为了实现具有吸引力的GaN放大器,GaN放大器的设计需要在毫米波波段具有高精度的GaN器件模型。然而,要在毫米波波段获得高精度的大信号模型还存在一些问题。其中一个问题是在大信号操作下的捕获效应。在[2]中已经报道了对漏极电流和跨电导的捕获效应的建模。本文提出了一个GaN器件模型,包括对非线性电容的捕获效应和利用该模型设计的ka波段高效GaN Doherty PA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信