Exploring data augmentation methods in reverberant human-robot voice communication

R. Gomez, Keisuke Nakamura
{"title":"Exploring data augmentation methods in reverberant human-robot voice communication","authors":"R. Gomez, Keisuke Nakamura","doi":"10.1109/ROMAN.2017.8172449","DOIUrl":null,"url":null,"abstract":"Collecting training data is not an easy task especially in situation involving robots that require tremendous physical effort. The ability to augment data through synthetic means is a convenient tool to solve this problem. Therefore it is important to evaluate the extent of the usefulness of augmented data. In this paper, we will explore data augmentation schemes in reverberant environment and investigate a method to effectively select data. We experiment in a real reverberant environment condition and investigate both the traditional automatic speech recognition (ASR) system based on gaussian mixture model-hidden markov model (GMM-HMM) and the most current system based on Deep Neural Networks (i.e, HMM-DNN). Our results show that the combination of data augmentation and data selection, further improves system performance. In our experiments, we used real test data in a reverberant hands-free human-robot communication scenario.","PeriodicalId":134777,"journal":{"name":"2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2017.8172449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Collecting training data is not an easy task especially in situation involving robots that require tremendous physical effort. The ability to augment data through synthetic means is a convenient tool to solve this problem. Therefore it is important to evaluate the extent of the usefulness of augmented data. In this paper, we will explore data augmentation schemes in reverberant environment and investigate a method to effectively select data. We experiment in a real reverberant environment condition and investigate both the traditional automatic speech recognition (ASR) system based on gaussian mixture model-hidden markov model (GMM-HMM) and the most current system based on Deep Neural Networks (i.e, HMM-DNN). Our results show that the combination of data augmentation and data selection, further improves system performance. In our experiments, we used real test data in a reverberant hands-free human-robot communication scenario.
探索混响人机语音通信中的数据增强方法
收集训练数据并不是一件容易的事情,尤其是在涉及到需要巨大体力劳动的机器人的情况下。通过综合手段增强数据的能力是解决这一问题的方便工具。因此,评估增强数据的有用程度是很重要的。本文将探讨混响环境下的数据增强方案,并研究一种有效选择数据的方法。本文在真实混响环境条件下进行了实验,研究了基于高斯混合模型-隐马尔可夫模型(GMM-HMM)的传统自动语音识别系统和基于深度神经网络(HMM-DNN)的自动语音识别系统。结果表明,数据扩充和数据选择相结合,进一步提高了系统性能。在我们的实验中,我们使用了真实的测试数据,在一个混响免提人机通信场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信