A realistic model for error estimates in the evaluation of elementary functions

K. Frankowski
{"title":"A realistic model for error estimates in the evaluation of elementary functions","authors":"K. Frankowski","doi":"10.1109/ARITH.1978.6155776","DOIUrl":null,"url":null,"abstract":"Floating point error analysis, as described by J. H. Wilkinson (1963) has two known drawbacks: it is too pessimistic and too cumbersome for everyday use. This paper describes a realistic model for error analysis, gives examples of simple formulae frequently used in the calculation of elementary functions, and analyses the error generated in single precision computations with these formulae, using the proposed model for error analysis. The paper also presents error bounds for various polynomial evaluations, as predicted by the model. Model verification is done using double precision arithmetic.","PeriodicalId":443215,"journal":{"name":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1978.6155776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Floating point error analysis, as described by J. H. Wilkinson (1963) has two known drawbacks: it is too pessimistic and too cumbersome for everyday use. This paper describes a realistic model for error analysis, gives examples of simple formulae frequently used in the calculation of elementary functions, and analyses the error generated in single precision computations with these formulae, using the proposed model for error analysis. The paper also presents error bounds for various polynomial evaluations, as predicted by the model. Model verification is done using double precision arithmetic.
初等函数求值误差估计的现实模型
正如j.h.威尔金森(1963)所描述的那样,浮点误差分析有两个已知的缺点:过于悲观,对于日常使用来说过于繁琐。本文描述了一个实际的误差分析模型,给出了计算初等函数时常用的简单公式的实例,并对这些公式在单精度计算中产生的误差进行了分析。本文还给出了各种多项式估计的误差范围,正如模型预测的那样。采用双精度算法对模型进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信