{"title":"Calibration of the Hubble Space Telescope Faint Object Camera","authors":"P. Greenfield, D. Giaretta, C. Heaps","doi":"10.1364/soa.1988.wb20","DOIUrl":null,"url":null,"abstract":"We will briefly describe the Hubble Space Telescope Faint Object Camera (FOC) and its operation, and the problems and solutions in calibrating it. The FOC is a photon counting imaging system with two different detectors in two different optical relays capable of f/96, f/288, or f/48 mode imaging, the last mode having a long slit spectrograph capability also (Ref. 1). The detectors (shown schematically in Figure 1), by and large the source of calibration difficulties, detect and store photons by using a three stage image intensifier with bialkalii photocathodes coupled with a television tube followed by signal processing electronics to recognize photon events. As photon events are recognized, they are stored in a digital memory which accumulates the image. The detector is capable of imaging sections of the focal plane photocathode in a wide variety of sizes and offsets (referred to as video formats). The largest has dimensions of 512 by 1024 pixels and covers a 44” by 44” area of the sky (f/48 relay).","PeriodicalId":184695,"journal":{"name":"Space Optics for Astrophysics and Earth and Planetary Remote Sensing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Optics for Astrophysics and Earth and Planetary Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/soa.1988.wb20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We will briefly describe the Hubble Space Telescope Faint Object Camera (FOC) and its operation, and the problems and solutions in calibrating it. The FOC is a photon counting imaging system with two different detectors in two different optical relays capable of f/96, f/288, or f/48 mode imaging, the last mode having a long slit spectrograph capability also (Ref. 1). The detectors (shown schematically in Figure 1), by and large the source of calibration difficulties, detect and store photons by using a three stage image intensifier with bialkalii photocathodes coupled with a television tube followed by signal processing electronics to recognize photon events. As photon events are recognized, they are stored in a digital memory which accumulates the image. The detector is capable of imaging sections of the focal plane photocathode in a wide variety of sizes and offsets (referred to as video formats). The largest has dimensions of 512 by 1024 pixels and covers a 44” by 44” area of the sky (f/48 relay).