Classifications of motor imagery tasks using k-nearest neighbors

Roxana Aldea, M. Fira, A. Lazar
{"title":"Classifications of motor imagery tasks using k-nearest neighbors","authors":"Roxana Aldea, M. Fira, A. Lazar","doi":"10.1109/NEUREL.2014.7011475","DOIUrl":null,"url":null,"abstract":"We address a classification method for motor imagery tasks-based brain computer interface (BCI). The wavelet coefficients are used to extract the features from the motor imagery electroencephalographic (EEG) signals and the k-nearest neighbor classifier is applied to classify the pattern of left or right hand imagery movement and rest. The performance of the proposed method is evaluated using EEG data recorded with 8 g.tec active electrodes by means of g.MOBIlab+ module. The maximum classification accuracy is 91%.","PeriodicalId":402208,"journal":{"name":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2014.7011475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We address a classification method for motor imagery tasks-based brain computer interface (BCI). The wavelet coefficients are used to extract the features from the motor imagery electroencephalographic (EEG) signals and the k-nearest neighbor classifier is applied to classify the pattern of left or right hand imagery movement and rest. The performance of the proposed method is evaluated using EEG data recorded with 8 g.tec active electrodes by means of g.MOBIlab+ module. The maximum classification accuracy is 91%.
基于k近邻的运动意象任务分类
我们提出了一种基于运动意象任务的脑机接口(BCI)分类方法。利用小波系数提取运动图像脑电图信号的特征,利用k近邻分类器对左手或右手图像运动和休息模式进行分类。利用g.MOBIlab+模块,利用8个g.tec活性电极记录的脑电图数据,对该方法的性能进行了评价。最大分类准确率为91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信