An Analysis of Universal Information Flow Based on Self-Composition

C. Müller, Máté Kovács, H. Seidl
{"title":"An Analysis of Universal Information Flow Based on Self-Composition","authors":"C. Müller, Máté Kovács, H. Seidl","doi":"10.1109/CSF.2015.33","DOIUrl":null,"url":null,"abstract":"We introduce a novel way of proving information flow properties of a program based on its self-composition. Similarly to the universal information flow type system of Hunt and Sands, our analysis explicitly computes the dependencies of variables in the final state on variables in the initial state. Accordingly, the analysis result is independent of specific information flow lattices, and allows to derive information flow w.r.t. any of these. While our analysis runs in polynomial time, we prove that it never loses precision against the type system of Hunt and Sands, and may gain extra precision by taking similarities between different branches of conditionals into account. Also, we indicate how it can be smoothly generalized to an interprocedural analysis.","PeriodicalId":210917,"journal":{"name":"2015 IEEE 28th Computer Security Foundations Symposium","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th Computer Security Foundations Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2015.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We introduce a novel way of proving information flow properties of a program based on its self-composition. Similarly to the universal information flow type system of Hunt and Sands, our analysis explicitly computes the dependencies of variables in the final state on variables in the initial state. Accordingly, the analysis result is independent of specific information flow lattices, and allows to derive information flow w.r.t. any of these. While our analysis runs in polynomial time, we prove that it never loses precision against the type system of Hunt and Sands, and may gain extra precision by taking similarities between different branches of conditionals into account. Also, we indicate how it can be smoothly generalized to an interprocedural analysis.
基于自合成的通用信息流分析
提出了一种基于程序自组成的证明程序信息流性质的新方法。与Hunt and Sands的通用信息流类型系统类似,我们的分析明确地计算了最终状态变量对初始状态变量的依赖关系。因此,分析结果独立于特定的信息流格,并允许从这些格中导出信息流。虽然我们的分析在多项式时间内运行,但我们证明了它对Hunt和Sands的类型系统永远不会失去精度,并且可以通过考虑不同分支条件之间的相似性来获得额外的精度。此外,我们指出如何将其顺利推广到程序间分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信