Seongguk Kim, Subin Kim, Kyungjun Cho, Taein Shin, Hyunwook Park, Daehwan Lho, Shinyoung Park, Kyungjune Son, Gapyeol Park, Joungho Kim
{"title":"Processing-in-memory in High Bandwidth Memory (PIM-HBM) Architecture with Energy-efficient and Low Latency Channels for High Bandwidth System","authors":"Seongguk Kim, Subin Kim, Kyungjun Cho, Taein Shin, Hyunwook Park, Daehwan Lho, Shinyoung Park, Kyungjune Son, Gapyeol Park, Joungho Kim","doi":"10.1109/EPEPS47316.2019.193209","DOIUrl":null,"url":null,"abstract":"In this paper, for the first time, we propose a processing-in-memory in high bandwidth memory (PIM-HBM) architecture for high bandwidth systems with low dynamic random-access memory (DRAM) access costs. The main concept of the proposed PIM-HBM architecture is to embed processing units into a logic base of high bandwidth memory (HBM) to decrease the energy consumption and latency of interconnections as the physical length between core and DRAM decreases. To verify the proposed PIM-HBM architecture, we designed on-chip and on-interposer I/O channels using a CMOS 0.18 µm process. We extracted channel parasitic using an electromagnetic (EM) solver and performed a SPICE simulation to compare the system performance of the proposed architecture with the conventional HBM. As a result, the performance of the proposed PIM-HBM architecture is successfully verified by reducing energy consumption and latency of interconnections by 77 % and 79 % compared to the conventional HBM system.","PeriodicalId":304228,"journal":{"name":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS47316.2019.193209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, for the first time, we propose a processing-in-memory in high bandwidth memory (PIM-HBM) architecture for high bandwidth systems with low dynamic random-access memory (DRAM) access costs. The main concept of the proposed PIM-HBM architecture is to embed processing units into a logic base of high bandwidth memory (HBM) to decrease the energy consumption and latency of interconnections as the physical length between core and DRAM decreases. To verify the proposed PIM-HBM architecture, we designed on-chip and on-interposer I/O channels using a CMOS 0.18 µm process. We extracted channel parasitic using an electromagnetic (EM) solver and performed a SPICE simulation to compare the system performance of the proposed architecture with the conventional HBM. As a result, the performance of the proposed PIM-HBM architecture is successfully verified by reducing energy consumption and latency of interconnections by 77 % and 79 % compared to the conventional HBM system.