Methodology of estimating the embedding dimension in chaos time series based on the prediction performance of K-CV_GRNN

Sun Yun, Wang Ying, Meng Xiangfei, Zhu Fashun, Guo Wen
{"title":"Methodology of estimating the embedding dimension in chaos time series based on the prediction performance of K-CV_GRNN","authors":"Sun Yun, Wang Ying, Meng Xiangfei, Zhu Fashun, Guo Wen","doi":"10.1109/ICISCAE.2018.8666863","DOIUrl":null,"url":null,"abstract":"This paper is about the methodology of estimating the embedding dimension for phase space reconstruction of chaotic time series according to the Takens theorem. Based on the prediction of nonlinear performance, it proposed an approach to the estimation of the embedding dimension based on the Generalized Regression Neural Network of K-Fold Cross Validation to solve the problems of small data, existing noise, subjective evaluation indexes in the prediction of chaotic time series. That is, it determines the embedding dimension by considering the variation (prediction accuracy and normalized variance) of the performance of prediction model of chaotic time series with embedding dimension. Numerical simulations verify that the method is applicable for determining an appropriate embedding dimension.","PeriodicalId":129861,"journal":{"name":"2018 International Conference on Information Systems and Computer Aided Education (ICISCAE)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information Systems and Computer Aided Education (ICISCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCAE.2018.8666863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is about the methodology of estimating the embedding dimension for phase space reconstruction of chaotic time series according to the Takens theorem. Based on the prediction of nonlinear performance, it proposed an approach to the estimation of the embedding dimension based on the Generalized Regression Neural Network of K-Fold Cross Validation to solve the problems of small data, existing noise, subjective evaluation indexes in the prediction of chaotic time series. That is, it determines the embedding dimension by considering the variation (prediction accuracy and normalized variance) of the performance of prediction model of chaotic time series with embedding dimension. Numerical simulations verify that the method is applicable for determining an appropriate embedding dimension.
基于K-CV_GRNN预测性能的混沌时间序列嵌入维数估计方法
本文研究了基于Takens定理的混沌时间序列相空间重构中嵌入维数的估计方法。在非线性性能预测的基础上,提出了一种基于广义回归神经网络K-Fold交叉验证的嵌入维数估计方法,解决了混沌时间序列预测中数据小、存在噪声、评价指标主观等问题。即通过考虑具有嵌入维数的混沌时间序列预测模型性能的变化(预测精度和归一化方差)来确定嵌入维数。数值模拟结果表明,该方法适用于确定合适的嵌入维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信