{"title":"How bad is Hadamard determinantal bound","authors":"Charles R. Johnson, M. Newman","doi":"10.6028/JRES.078B.021","DOIUrl":null,"url":null,"abstract":"Thp Hadamard bound for t he determinant of an\" by n ma trix is a good o ne in that equal it y may be a tta ined in a ri ch c lass of cases. Howe ver , th e bound gene rally g ives up a good d e al , a nd we a nswe r th e titl e ques tion \" on the average.\" Ass uming the e ntries of A = I (J ;j ) are uniform ly di s tribut ed ove r som e interval symmetric about the origin , the expec ted va lue of the ratio of (de t A)\" 10 t.h e square of the \"t Hadamard bound is fo und tu be ---.: . The expecta tions of the square of the Hadama rd bound and of n1l n ! (de t A )\" a re a lso computed individua ll y. a nd the ir ra t.io t urns out a lso to be . n il","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"15 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1974-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.078B.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Thp Hadamard bound for t he determinant of an" by n ma trix is a good o ne in that equal it y may be a tta ined in a ri ch c lass of cases. Howe ver , th e bound gene rally g ives up a good d e al , a nd we a nswe r th e titl e ques tion " on the average." Ass uming the e ntries of A = I (J ;j ) are uniform ly di s tribut ed ove r som e interval symmetric about the origin , the expec ted va lue of the ratio of (de t A)" 10 t.h e square of the "t Hadamard bound is fo und tu be ---.: . The expecta tions of the square of the Hadama rd bound and of n1l n ! (de t A )" a re a lso computed individua ll y. a nd the ir ra t.io t urns out a lso to be . n il
x × n矩阵的行列式的哈达尔界是一个很好的界,它等于y在很多情况下可以是一个集合。然而,结合的基因放弃了一个很好的结果,我们可以用“平均”这个问题来回答这个问题。假设A = I (J; J)的e个项均匀地分布在一个关于原点对称的区间上,则(de / A)的比值的期望值为10 . t哈达曼界的平方是——。:。哈达玛界的平方和n1n !的期望值(de to A)“我也是一个被计算出来的人,”他说,“而且我认为,事实证明,我也是一个被计算出来的人。n il