Jeong Keun Jang, Ho Keun Kim, M. Sunwoo, O. Gustafsson
{"title":"Area-Efficient Scheduling Scheme Based FFT Processor for Various OFDM Systems","authors":"Jeong Keun Jang, Ho Keun Kim, M. Sunwoo, O. Gustafsson","doi":"10.1109/APCCAS.2018.8605617","DOIUrl":null,"url":null,"abstract":"This paper presents an area-efficient fast Fourier transform (FFT) processor for orthogonal frequency-division multiplexing systems based on multi-path delay commutator architecture. This paper proposes a data scheduling scheme to reduce the number of complex constant multipliers. The proposed mixed-radix multi-path delay commutator FFT processor can support 128-, 256-, and 512-point FFT sizes. The proposed processor was synthesized using the Samsung 65-nm CMOS standard cell library. The proposed processor with eight parallel data paths can achieve a high throughput rate of up to 2.64 GSample/s at 330 MHz.","PeriodicalId":325141,"journal":{"name":"2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2018.8605617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents an area-efficient fast Fourier transform (FFT) processor for orthogonal frequency-division multiplexing systems based on multi-path delay commutator architecture. This paper proposes a data scheduling scheme to reduce the number of complex constant multipliers. The proposed mixed-radix multi-path delay commutator FFT processor can support 128-, 256-, and 512-point FFT sizes. The proposed processor was synthesized using the Samsung 65-nm CMOS standard cell library. The proposed processor with eight parallel data paths can achieve a high throughput rate of up to 2.64 GSample/s at 330 MHz.