Fuzzy unit commitment using the Ant Colony Search Algorithm

M. Y. El-Sharkh, N. Sisworahardjo, A. El-Keib, A. Rahman
{"title":"Fuzzy unit commitment using the Ant Colony Search Algorithm","authors":"M. Y. El-Sharkh, N. Sisworahardjo, A. El-Keib, A. Rahman","doi":"10.1109/EPEC.2010.5697256","DOIUrl":null,"url":null,"abstract":"Solving the deterministic unit commitment (UC) model may yield the optimal commitment for each unit for a certain condition of the power system. Changing the system condition due to a sudden change or uncertainties may render the obtained solution infeasible or inapplicable to the system under study. This paper presents a fuzzy model to handle uncertainties associated with the UC problem and introduces a methodology based on the Ant Colony Search Algorithm (ACSA) to find a near-optimal solution to the problem. The ACSA is a meta-heuristic technique for solving hard combinatorial optimization problems, a class of problems which the UC problem belongs to. The ACSA was inspired by the behavior of real ants that are capable of finding the shortest path from food sources to the nest without using visual cues. The proposed approach uses a fuzzy comparison technique and generates a fuzzy range of the cost that reflects problem uncertainties. Test results on a 10-unit system demonstrate the viability of the proposed technique to solve the UC problem considering uncertainties.","PeriodicalId":393869,"journal":{"name":"2010 IEEE Electrical Power & Energy Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electrical Power & Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2010.5697256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Solving the deterministic unit commitment (UC) model may yield the optimal commitment for each unit for a certain condition of the power system. Changing the system condition due to a sudden change or uncertainties may render the obtained solution infeasible or inapplicable to the system under study. This paper presents a fuzzy model to handle uncertainties associated with the UC problem and introduces a methodology based on the Ant Colony Search Algorithm (ACSA) to find a near-optimal solution to the problem. The ACSA is a meta-heuristic technique for solving hard combinatorial optimization problems, a class of problems which the UC problem belongs to. The ACSA was inspired by the behavior of real ants that are capable of finding the shortest path from food sources to the nest without using visual cues. The proposed approach uses a fuzzy comparison technique and generates a fuzzy range of the cost that reflects problem uncertainties. Test results on a 10-unit system demonstrate the viability of the proposed technique to solve the UC problem considering uncertainties.
基于蚁群搜索算法的模糊单元承诺
求解确定性机组负荷模型可以得到电力系统在一定条件下各机组的最优负荷。由于突然变化或不确定性而改变系统条件可能使所获得的解不可行或不适用于所研究的系统。本文提出了一个模糊模型来处理UC问题的不确定性,并介绍了一种基于蚁群搜索算法(ACSA)的方法来寻找问题的近最优解。ACSA是解决UC问题所属的一类难组合优化问题的一种元启发式方法。ACSA的灵感来自于真实蚂蚁的行为,它们能够在不使用视觉线索的情况下找到从食物来源到巢穴的最短路径。该方法采用模糊比较技术,生成反映问题不确定性的成本模糊范围。在一个10单元系统上的测试结果证明了该方法在考虑不确定性的情况下解决UC问题的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信