Temporal resolution properties of dynamic PET reconstructions

E. Asma, Thomas E. Nichols, R. Leahy
{"title":"Temporal resolution properties of dynamic PET reconstructions","authors":"E. Asma, Thomas E. Nichols, R. Leahy","doi":"10.1109/NSSMIC.2002.1239438","DOIUrl":null,"url":null,"abstract":"We describe methods for computing mean and variance approximations to instantaneous and average rate estimates obtained from continuous-time penalized ML dynamic PET image reconstructions. The derivation is based on writing the likelihood for the list-mode data as the limiting case of the likelihood for binned sinogram data as the temporal bin width goes to zero. We show that approximations of the mean and covariance can then be computed for continuous-time penalized ML estimates by exploiting spatio-temporal separability and the use of Kronecker decompositions. The resulting expressions are tractible forms that provide estimates of the mean and of instantaneous and time-averaged covariance between any two voxels and time instances.","PeriodicalId":385259,"journal":{"name":"2002 IEEE Nuclear Science Symposium Conference Record","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE Nuclear Science Symposium Conference Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2002.1239438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We describe methods for computing mean and variance approximations to instantaneous and average rate estimates obtained from continuous-time penalized ML dynamic PET image reconstructions. The derivation is based on writing the likelihood for the list-mode data as the limiting case of the likelihood for binned sinogram data as the temporal bin width goes to zero. We show that approximations of the mean and covariance can then be computed for continuous-time penalized ML estimates by exploiting spatio-temporal separability and the use of Kronecker decompositions. The resulting expressions are tractible forms that provide estimates of the mean and of instantaneous and time-averaged covariance between any two voxels and time instances.
动态PET重建的时间分辨率特性
我们描述了计算从连续时间惩罚ML动态PET图像重建获得的瞬时和平均速率估计的均值和方差近似值的方法。这种推导是基于将列表模式数据的似然作为分箱sinogram数据的似然的极限情况来编写的,因为分箱宽度趋近于零。我们表明,通过利用时空可分性和使用Kronecker分解,可以计算连续时间惩罚ML估计的均值和协方差的近似值。由此产生的表达式是可操作的形式,提供任何两个体素和时间实例之间的平均值和瞬时和时间平均协方差的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信