An Efficient Classification for Light Motor Vehicles using CatBoost Algorithm

M. Pemila, R. Pongiannan, Venkatesh Pandey, P. Mondal, Saumyarup Bhaumik
{"title":"An Efficient Classification for Light Motor Vehicles using CatBoost Algorithm","authors":"M. Pemila, R. Pongiannan, Venkatesh Pandey, P. Mondal, Saumyarup Bhaumik","doi":"10.1109/ICECCT56650.2023.10179717","DOIUrl":null,"url":null,"abstract":"This paper proclaims the application of light motor vehicles (LMV) classification employing the unique algorithm named CatBoost (CB) algorithm to boost the accuracy in vehicle classification concerning features of colors and shapes. Normally, the classification grounded on non-identical parameters including label features, various classes, peculiar structures, features tobe extracted, segmented portrayal and connotation classification is greatly protested to incorporate in machine learning model. In this circumstance, the CatBoost algorithm has been utilized to gain high performance in LMV classification from the huge surveillance dataset. The empirical outcome accuracy is gained in LMV classification with high grade of resolution images.","PeriodicalId":180790,"journal":{"name":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT56650.2023.10179717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proclaims the application of light motor vehicles (LMV) classification employing the unique algorithm named CatBoost (CB) algorithm to boost the accuracy in vehicle classification concerning features of colors and shapes. Normally, the classification grounded on non-identical parameters including label features, various classes, peculiar structures, features tobe extracted, segmented portrayal and connotation classification is greatly protested to incorporate in machine learning model. In this circumstance, the CatBoost algorithm has been utilized to gain high performance in LMV classification from the huge surveillance dataset. The empirical outcome accuracy is gained in LMV classification with high grade of resolution images.
基于CatBoost算法的轻型机动车辆分类
本文提出了轻型机动车辆(LMV)分类的应用,采用独特的CatBoost (CB)算法来提高车辆颜色和形状特征分类的准确性。通常情况下,基于标签特征、各种类别、特殊结构、待提取特征、分段刻画和内涵分类等非相同参数的分类方法被广泛应用于机器学习模型中。在这种情况下,CatBoost算法被用于从庞大的监控数据集中获得高性能的LMV分类。在高分辨率图像的LMV分类中获得了经验结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信