Clustering experiments with the Astro benchmarking data set with semantic document embeddings – off-the-shelf vs. custom embeddings created from citations, text, and both

Paul Donner
{"title":"Clustering experiments with the Astro benchmarking data set with semantic document embeddings – off-the-shelf vs. custom embeddings created from citations, text, and both","authors":"Paul Donner","doi":"10.55835/643fed628e529cfebf33f797","DOIUrl":null,"url":null,"abstract":"What accounts for the observed better quality of publication-level topical science clustering solutions which use only citation relations as input data, compared to those using sophisticated semantic similarity data derived from both citations and textual terms? A survey of empirical work relevant to the concept of unconscientious referencing practices indicates that purely citation-based methods should be affected by significant ‘citation noise’, unlike text-based methods. This study continues work with the Astro benchmarking data set for bibliometric clustering by applying semantic representation learning techniques to scientific documents in order to isolate the clustering performance difference between direct citations and textual terms. We investigate variants of Random Indexing embeddings learned on this data set and one pre-trained off-the-shelf semantic document embedding, SPECTER. The evaluation is performed with four previously introduced validation data sets but using a newly suggested clustering evaluation measure.","PeriodicalId":334841,"journal":{"name":"27th International Conference on Science, Technology and Innovation Indicators (STI 2023)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th International Conference on Science, Technology and Innovation Indicators (STI 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55835/643fed628e529cfebf33f797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

What accounts for the observed better quality of publication-level topical science clustering solutions which use only citation relations as input data, compared to those using sophisticated semantic similarity data derived from both citations and textual terms? A survey of empirical work relevant to the concept of unconscientious referencing practices indicates that purely citation-based methods should be affected by significant ‘citation noise’, unlike text-based methods. This study continues work with the Astro benchmarking data set for bibliometric clustering by applying semantic representation learning techniques to scientific documents in order to isolate the clustering performance difference between direct citations and textual terms. We investigate variants of Random Indexing embeddings learned on this data set and one pre-trained off-the-shelf semantic document embedding, SPECTER. The evaluation is performed with four previously introduced validation data sets but using a newly suggested clustering evaluation measure.
使用Astro基准测试数据集进行聚类实验,其中包含语义文档嵌入——现成的与自定义的,从引用、文本或两者创建的嵌入
与使用来自引文和文本术语的复杂语义相似度数据的聚类解决方案相比,仅使用引文关系作为输入数据的发表级主题科学聚类解决方案的质量更好,原因是什么?一项与不自觉引用实践相关的实证研究表明,与基于文本的方法不同,纯粹基于引文的方法应该受到显著的“引文噪声”的影响。本研究继续使用Astro基准数据集进行文献计量聚类,通过将语义表示学习技术应用于科学文献,以隔离直接引用和文本术语之间的聚类性能差异。我们研究了在这个数据集上学习到的随机索引嵌入的变体,以及一个预训练的现成语义文档嵌入,SPECTER。评估是用四个先前引入的验证数据集执行的,但使用了一个新建议的聚类评估度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信