Analysis of double-gate FinFET-based address decoder for radiation-induced single-event-transients

S. Rathod, A. Saxena, S. Dasgupta
{"title":"Analysis of double-gate FinFET-based address decoder for radiation-induced single-event-transients","authors":"S. Rathod, A. Saxena, S. Dasgupta","doi":"10.1049/iet-cds.2011.0253","DOIUrl":null,"url":null,"abstract":"In this study, the authors evaluate different schemes of address decoders based on bulk, single gate (SG) silicon-on-insulator (SOI) and double gate (DG) FinFET technology. Schemes differ in terms of back gate connections, and swing on the enable and address lines. The analysis for delay, power dissipation and critical charge has been carried out. Radiation induced single event transients and multiple bit upsets in address decoder have been studied. For radiation hardened applications, tied gate configuration has been found to be good choice over bulk, SG-SOI and independent gate configurations. The effect of process parameter variations on different schemes has been studied. HSPICE simulations have been performed with 45 nm bulk, SG-SOI and DG-FinFET predictive technology models.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2011.0253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this study, the authors evaluate different schemes of address decoders based on bulk, single gate (SG) silicon-on-insulator (SOI) and double gate (DG) FinFET technology. Schemes differ in terms of back gate connections, and swing on the enable and address lines. The analysis for delay, power dissipation and critical charge has been carried out. Radiation induced single event transients and multiple bit upsets in address decoder have been studied. For radiation hardened applications, tied gate configuration has been found to be good choice over bulk, SG-SOI and independent gate configurations. The effect of process parameter variations on different schemes has been studied. HSPICE simulations have been performed with 45 nm bulk, SG-SOI and DG-FinFET predictive technology models.
基于双栅极finfet的辐射单事件瞬态地址解码器分析
在本研究中,作者评估了基于块体、单栅(SG)绝缘体上硅(SOI)和双栅(DG) FinFET技术的不同地址解码器方案。方案在后门连接方面有所不同,并在启用和地址线上摇摆。对延时、功耗和临界电荷进行了分析。研究了地址解码器中辐射引起的单事件瞬变和多位扰动。对于辐射硬化应用,捆扎栅极配置已被发现是比散装,SG-SOI和独立栅极配置更好的选择。研究了工艺参数变化对不同方案的影响。采用45纳米体、SG-SOI和DG-FinFET预测技术模型进行了HSPICE模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信