Shoudong Huang, Yingwu Lai, U. Frese, G. Dissanayake
{"title":"How far is SLAM from a linear least squares problem?","authors":"Shoudong Huang, Yingwu Lai, U. Frese, G. Dissanayake","doi":"10.1109/IROS.2010.5652603","DOIUrl":null,"url":null,"abstract":"Most people believe SLAM is a complex nonlinear estimation/optimization problem. However, recent research shows that some simple iterative methods based on linearization can sometimes provide surprisingly good solutions to SLAM without being trapped into a local minimum. This demonstrates that hidden structure exists in the SLAM problem that is yet to be understood. In this paper, we first analyze how far SLAM is from a convex optimization problem. Then we show that by properly choosing the state vector, SLAM problem can be formulated as a nonlinear least squares problem with many quadratic terms in the objective function, thus it is clearer how far SLAM is from a linear least squares problem. Furthermore, we explain that how the map joining approaches reduce the nonlinearity/nonconvexity of the SLAM problem.","PeriodicalId":420658,"journal":{"name":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2010.5652603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63
Abstract
Most people believe SLAM is a complex nonlinear estimation/optimization problem. However, recent research shows that some simple iterative methods based on linearization can sometimes provide surprisingly good solutions to SLAM without being trapped into a local minimum. This demonstrates that hidden structure exists in the SLAM problem that is yet to be understood. In this paper, we first analyze how far SLAM is from a convex optimization problem. Then we show that by properly choosing the state vector, SLAM problem can be formulated as a nonlinear least squares problem with many quadratic terms in the objective function, thus it is clearer how far SLAM is from a linear least squares problem. Furthermore, we explain that how the map joining approaches reduce the nonlinearity/nonconvexity of the SLAM problem.