Extended Kalman filter tuning in sensorless PMSM drives

S. Bolognani, L. Tubiana, M. Zigliotto
{"title":"Extended Kalman filter tuning in sensorless PMSM drives","authors":"S. Bolognani, L. Tubiana, M. Zigliotto","doi":"10.1109/PCC.2002.998560","DOIUrl":null,"url":null,"abstract":"The use of an extended Kalman filter (EKF) as nonlinear speed and position observer for permanent magnet synchronous motor (PMSM) drives is a mature research topic. Notwithstanding, the shift from research prototype to a market-ready product still calls for a solution of some implementation pitfalls. The major and still unsolved topic is the choice of the EKF covariance matrices. This paper replaces the usual trial-and-error method with a straightforward matrices choice. These matrices, possibly combined with a novel self-tuning procedure, should put the EKF drive much closer to an off-the-shelf product. The proposed method is based on the complete normalisation of the EKF algorithm representation. Successful experimental results are included in the paper.","PeriodicalId":320424,"journal":{"name":"Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No.02TH8579)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"526","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No.02TH8579)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCC.2002.998560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 526

Abstract

The use of an extended Kalman filter (EKF) as nonlinear speed and position observer for permanent magnet synchronous motor (PMSM) drives is a mature research topic. Notwithstanding, the shift from research prototype to a market-ready product still calls for a solution of some implementation pitfalls. The major and still unsolved topic is the choice of the EKF covariance matrices. This paper replaces the usual trial-and-error method with a straightforward matrices choice. These matrices, possibly combined with a novel self-tuning procedure, should put the EKF drive much closer to an off-the-shelf product. The proposed method is based on the complete normalisation of the EKF algorithm representation. Successful experimental results are included in the paper.
扩展卡尔曼滤波调谐在无传感器永磁同步电机驱动器
将扩展卡尔曼滤波(EKF)作为永磁同步电机(PMSM)驱动的非线性速度和位置观测器是一个成熟的研究课题。尽管如此,从研究原型到市场就绪产品的转变仍然需要解决一些实施陷阱。EKF协方差矩阵的选择是目前尚未解决的主要问题。本文用一个简单的矩阵选择取代了通常的试错法。这些矩阵,可能与一种新颖的自调优过程相结合,应该使EKF驱动器更接近于现成的产品。提出的方法是基于EKF算法表示的完全归一化。文中给出了成功的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信