Short-window spectral analysis using AMVAR and multitaper methods

N. Hariharan
{"title":"Short-window spectral analysis using AMVAR and multitaper methods","authors":"N. Hariharan","doi":"10.1109/SPCOM.2004.1458364","DOIUrl":null,"url":null,"abstract":"In this paper, we compare two popular methods for estimating power spectrum for short time series, namely adaptive multivariate autoregressive (AMVAR) method and the multitaper method. By analyzing a simulated signal (embedded in a background Ornstein-Uhlenbeck noise process) we demonstrate that the AMVAR method performs better for very short data when compared to the multitaper method. We also show that coherence can still be detected in noisy bivariate time series data even if the individual power spectra fail to show any peaks.","PeriodicalId":424981,"journal":{"name":"2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM.2004.1458364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we compare two popular methods for estimating power spectrum for short time series, namely adaptive multivariate autoregressive (AMVAR) method and the multitaper method. By analyzing a simulated signal (embedded in a background Ornstein-Uhlenbeck noise process) we demonstrate that the AMVAR method performs better for very short data when compared to the multitaper method. We also show that coherence can still be detected in noisy bivariate time series data even if the individual power spectra fail to show any peaks.
利用AMVAR和多锥度方法进行短窗光谱分析
本文比较了两种常用的短时间序列功率谱估计方法,即自适应多元自回归法(AMVAR)和多锥度法。通过分析模拟信号(嵌入在背景Ornstein-Uhlenbeck噪声过程中),我们证明了与多锥度方法相比,AMVAR方法在非常短的数据中表现更好。我们还表明,即使单个功率谱没有显示任何峰值,在有噪声的二元时间序列数据中仍然可以检测到相干性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信