Investigation on NBTI Control Techniques of HKMG Transistors for Low-power DRAM applications

Wonju Sung, Hyun Seung Kim, J. Han, Seguen Park, Jeonghoon Oh, H. Ban, Jooyoung Lee
{"title":"Investigation on NBTI Control Techniques of HKMG Transistors for Low-power DRAM applications","authors":"Wonju Sung, Hyun Seung Kim, J. Han, Seguen Park, Jeonghoon Oh, H. Ban, Jooyoung Lee","doi":"10.1109/IRPS48203.2023.10117706","DOIUrl":null,"url":null,"abstract":"Conventional techniques for negative bias temperature instability (NBTI) improvement were evaluated to apply high-k metal gate (HKMG) for commercial DRAM applications. This research evaluated the role of several essential fabrication process on the PMOS employing channel SiGe (cSiGe) to contain NBTI. At the interlayer (IL), the RF nitridation (RFN) caused radical-induced re-oxidation, and capacitance equalized thickness (CET) increase. Then, reducing nitrogen (N) was not enough to refrain NBTI. On the other hand, modifying de-coupled plasma nitridation (DPN) on the high-k layer was effective to suppress threshold voltage degradation via NBTI with minimized transistor drain-induced barrier lowering (DIBL) degradation. Also, the research proves that the process window of hydrogen (H) passivation must be optimized for low-power DRAM applications since the H passivation improved transconductance, but degraded NBTI.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10117706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Conventional techniques for negative bias temperature instability (NBTI) improvement were evaluated to apply high-k metal gate (HKMG) for commercial DRAM applications. This research evaluated the role of several essential fabrication process on the PMOS employing channel SiGe (cSiGe) to contain NBTI. At the interlayer (IL), the RF nitridation (RFN) caused radical-induced re-oxidation, and capacitance equalized thickness (CET) increase. Then, reducing nitrogen (N) was not enough to refrain NBTI. On the other hand, modifying de-coupled plasma nitridation (DPN) on the high-k layer was effective to suppress threshold voltage degradation via NBTI with minimized transistor drain-induced barrier lowering (DIBL) degradation. Also, the research proves that the process window of hydrogen (H) passivation must be optimized for low-power DRAM applications since the H passivation improved transconductance, but degraded NBTI.
低功耗DRAM中HKMG晶体管的NBTI控制技术研究
对传统的负偏置温度不稳定性(NBTI)改进技术进行了评估,以将高k金属栅极(HKMG)应用于商业DRAM应用。本研究评估了几种重要的制备工艺对采用SiGe通道(cSiGe)封装NBTI的PMOS的作用。在中间层(IL),射频氮化(RFN)引起自由基诱导的再氧化,电容均衡厚度(CET)增加。然后,减少氮(N)不足以抑制NBTI。另一方面,修改高k层上的解耦等离子体氮化(DPN)可以有效抑制NBTI的阈值电压退化,同时最小化晶体管漏极诱导势垒降低(DIBL)退化。此外,研究证明,由于氢钝化改善了跨导性,但降低了NBTI,因此必须优化低功耗DRAM的工艺窗口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信