Classification of Defective Photovoltaic Modules in ImageNet-Trained Networks Using Transfer Learning

Dongkun Hou, Jieming Ma, Sida Huang, Jie Zhang, Xiaohui Zhu
{"title":"Classification of Defective Photovoltaic Modules in ImageNet-Trained Networks Using Transfer Learning","authors":"Dongkun Hou, Jieming Ma, Sida Huang, Jie Zhang, Xiaohui Zhu","doi":"10.1109/ECCE-Asia49820.2021.9479376","DOIUrl":null,"url":null,"abstract":"The quality inspection of photovoltaic modules is very important to power generation efficiency. Although electroluminescence can directly detect the defects in photovoltaic modules, it is difficult to get the desirable accuracy by traditional manual inspection. It thus necessitates an efficient defect identification method. This paper introduces ImageNet-trained networks for identifying the defective Photovoltaic modules. Six convolutional neural networks are realized by transfer learning. The experimental results present the Xception model has a higher accuracy for the classification of defective photovoltaic cells.","PeriodicalId":145366,"journal":{"name":"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE-Asia49820.2021.9479376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The quality inspection of photovoltaic modules is very important to power generation efficiency. Although electroluminescence can directly detect the defects in photovoltaic modules, it is difficult to get the desirable accuracy by traditional manual inspection. It thus necessitates an efficient defect identification method. This paper introduces ImageNet-trained networks for identifying the defective Photovoltaic modules. Six convolutional neural networks are realized by transfer learning. The experimental results present the Xception model has a higher accuracy for the classification of defective photovoltaic cells.
基于迁移学习的imagenet训练网络中缺陷光伏组件分类
光伏组件的质量检测对发电效率至关重要。电致发光虽然可以直接检测光伏组件的缺陷,但传统的人工检测难以达到理想的精度。因此,需要一种有效的缺陷识别方法。本文介绍了基于imagenet训练的光伏组件缺陷识别网络。通过迁移学习实现了6个卷积神经网络。实验结果表明,Xception模型对缺陷光伏电池的分类具有较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信