Ergonomic Support for Logo Development Based on Deep Learning

Alexandr A. Kuzmenko, S. Kondratenko, K. Dergachev, Valery Spasennikov
{"title":"Ergonomic Support for Logo Development Based on Deep Learning","authors":"Alexandr A. Kuzmenko, S. Kondratenko, K. Dergachev, Valery Spasennikov","doi":"10.51130/graphicon-2020-2-4-42","DOIUrl":null,"url":null,"abstract":"Every year rendering logos becomes an increasingly important task in various fields. One of the most interesting methods for rendering logos is the use of neural networks. This paper proposes a method for rendering logos using a convolutional neural network (CNN), specially trained to classify objects based on a single keyword and to select parametric characteristics of the logo. Special attention is paid to the ergonomic evaluation of resulting logos and the feasibility of the proposed method is experimentally confirmed. The research has shown that the results obtained are superior compared to the most modern approaches.","PeriodicalId":344054,"journal":{"name":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51130/graphicon-2020-2-4-42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Every year rendering logos becomes an increasingly important task in various fields. One of the most interesting methods for rendering logos is the use of neural networks. This paper proposes a method for rendering logos using a convolutional neural network (CNN), specially trained to classify objects based on a single keyword and to select parametric characteristics of the logo. Special attention is paid to the ergonomic evaluation of resulting logos and the feasibility of the proposed method is experimentally confirmed. The research has shown that the results obtained are superior compared to the most modern approaches.
基于深度学习的Logo设计人机工程学支持
每年,logo渲染在各个领域都成为一项越来越重要的任务。一个最有趣的方法来渲染标志是使用神经网络。本文提出了一种使用卷积神经网络(CNN)来绘制徽标的方法,卷积神经网络经过专门训练,可以根据单个关键字对对象进行分类,并选择徽标的参数特征。特别注意对结果标识的人机工程学评价,并通过实验验证了所提出方法的可行性。研究表明,所获得的结果比最现代的方法要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信