Robust model matching for geometric fault detection filters

P. Seiler, J. Bokor, B. Vanek, G. Balas
{"title":"Robust model matching for geometric fault detection filters","authors":"P. Seiler, J. Bokor, B. Vanek, G. Balas","doi":"10.3182/20110828-6-IT-1002.03440","DOIUrl":null,"url":null,"abstract":"Geometric fault detection and isolation filters are known for having excellent fault isolation properties. However, they are generally assumed to be sensitive to model uncertainty and noise. This paper proposes a robust model matching method to incorporate model uncertainty into the design of geometric fault detection filters. Several existing methods for robust filter synthesis are described to solve the robust model matching problem. It is then shown that the robust model matching problem has an interesting self-optimality property for multiplicative input uncertainty models. Finally, a simple example is presented to study the effect of parametric uncertainty and unmodeled dynamics on the performance of a geometric filter.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20110828-6-IT-1002.03440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Geometric fault detection and isolation filters are known for having excellent fault isolation properties. However, they are generally assumed to be sensitive to model uncertainty and noise. This paper proposes a robust model matching method to incorporate model uncertainty into the design of geometric fault detection filters. Several existing methods for robust filter synthesis are described to solve the robust model matching problem. It is then shown that the robust model matching problem has an interesting self-optimality property for multiplicative input uncertainty models. Finally, a simple example is presented to study the effect of parametric uncertainty and unmodeled dynamics on the performance of a geometric filter.
几何故障检测滤波器的鲁棒模型匹配
几何故障检测和隔离滤波器以其优异的故障隔离特性而闻名。然而,它们通常被认为对模型的不确定性和噪声敏感。本文提出了一种鲁棒模型匹配方法,将模型不确定性纳入几何故障检测滤波器的设计中。介绍了现有的几种鲁棒滤波器合成方法,以解决鲁棒模型匹配问题。结果表明,对于乘法输入不确定性模型,鲁棒模型匹配问题具有有趣的自最优性。最后,给出了一个简单的例子来研究参数不确定性和未建模动力学对几何滤波器性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信