Sumaira Tasnim, Ashfaqur Rahman, Gm. Shafiullah, A. Oo, A. Stojcevski
{"title":"A time series ensemble method to predict wind power","authors":"Sumaira Tasnim, Ashfaqur Rahman, Gm. Shafiullah, A. Oo, A. Stojcevski","doi":"10.1109/CIASG.2014.7011544","DOIUrl":null,"url":null,"abstract":"Wind power prediction refers to an approximation of the probable production of wind turbines in the near future. We present a time series ensemble framework to predict wind power. Time series wind data is transformed using a number of complementary methods. Wind power is predicted on each transformed feature space. Predictions are aggregated using a neural network at a second stage. The proposed framework is validated on wind data obtained from ten different locations across Australia. Experimental results demonstrate that the ensemble predictor performs better than the base predictors.","PeriodicalId":166543,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIASG.2014.7011544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Wind power prediction refers to an approximation of the probable production of wind turbines in the near future. We present a time series ensemble framework to predict wind power. Time series wind data is transformed using a number of complementary methods. Wind power is predicted on each transformed feature space. Predictions are aggregated using a neural network at a second stage. The proposed framework is validated on wind data obtained from ten different locations across Australia. Experimental results demonstrate that the ensemble predictor performs better than the base predictors.