L. Linares, R. Erickson, S. MacAlpine, M. Brandemuehl
{"title":"Improved Energy Capture in Series String Photovoltaics via Smart Distributed Power Electronics","authors":"L. Linares, R. Erickson, S. MacAlpine, M. Brandemuehl","doi":"10.1109/APEC.2009.4802770","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved module integrated converter to increase energy capture in the photovoltaic (PV) series string. Prototypes for self-powered, high efficiency dc-dc converters that operate with autonomous control for tracking the maximum power of solar panels locally and on a fine scale are simulated, built and tested. The resulting module is a low-cost, reliable smart PV panel that operates independently of the geometry and complexity of the surrounding system. The controller maximizes energy capture by selection of one of three possible modes: buck, boost and pass-through. Autonomous controllers achieve noninteracting maximum power point tracking and a constant string voltage. The proposed module-integrated converters are verified in simulation. Experimental results show that the converter prototype achieves efficiencies of over 95% for most of its operating range. A 3-module PV series string was tested under mismatched solar irradiation conditions and increases of up to 38% power capture were measured.","PeriodicalId":200366,"journal":{"name":"2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"221","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2009.4802770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 221
Abstract
This paper proposes an improved module integrated converter to increase energy capture in the photovoltaic (PV) series string. Prototypes for self-powered, high efficiency dc-dc converters that operate with autonomous control for tracking the maximum power of solar panels locally and on a fine scale are simulated, built and tested. The resulting module is a low-cost, reliable smart PV panel that operates independently of the geometry and complexity of the surrounding system. The controller maximizes energy capture by selection of one of three possible modes: buck, boost and pass-through. Autonomous controllers achieve noninteracting maximum power point tracking and a constant string voltage. The proposed module-integrated converters are verified in simulation. Experimental results show that the converter prototype achieves efficiencies of over 95% for most of its operating range. A 3-module PV series string was tested under mismatched solar irradiation conditions and increases of up to 38% power capture were measured.