АНАЛИТИЧЕСКОЕ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ УЕДИНЕННЫХ ВОЛН, ОПИСЫВАЕМЫХ ОБОБЩЕННЫМ УРАВНЕНИЕМ КАУПА–НЬЮЭЛЛА

К. В. Кан, Н. А. Кудряшов
{"title":"АНАЛИТИЧЕСКОЕ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ УЕДИНЕННЫХ ВОЛН, ОПИСЫВАЕМЫХ ОБОБЩЕННЫМ УРАВНЕНИЕМ КАУПА–НЬЮЭЛЛА","authors":"К. В. Кан, Н. А. Кудряшов","doi":"10.26583/vestnik.2023.254","DOIUrl":null,"url":null,"abstract":"Исследуется распространение импульсов в оптическом волокне, описываемых обобщенным уравнением Каупа-Ньюэлла, учитывающим произвольный коэффициент отражения. Используя переменные бегущей волны обобщенное уравнение Каупа-Ньюэлла сведено к системе нелинейных дифференциальных уравнений, соответствующих вещественной и мнимой частям. Найдены условия совместности полученной системы уравнений. Получены точные решения уравнения при фиксированном n = 1, выраженные через эллиптическую функцию Вейерштрасса и эллиптический синус. С помощью обобщенного метода простейших уравнений найдены точные решения уравнения в виде уединенных волн при произвольном коэффициенте отражения. Сформулирована математическая модель, учитывающая периодические граничные условия. На регулярной сетке построено численное решение с использованием псевдоспектрального метода. Проведена верификация программного кода численного решения задачи путем сравнения полученных численного и аналитического решений в виде уединенных волн. С учетом ограничений на параметры модели исследована зависимость погрешности от шага по пространственной переменной. Построены и проанализированы графики аналитического и численного решений.","PeriodicalId":118070,"journal":{"name":"Вестник НИЯУ МИФИ","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Вестник НИЯУ МИФИ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/vestnik.2023.254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Исследуется распространение импульсов в оптическом волокне, описываемых обобщенным уравнением Каупа-Ньюэлла, учитывающим произвольный коэффициент отражения. Используя переменные бегущей волны обобщенное уравнение Каупа-Ньюэлла сведено к системе нелинейных дифференциальных уравнений, соответствующих вещественной и мнимой частям. Найдены условия совместности полученной системы уравнений. Получены точные решения уравнения при фиксированном n = 1, выраженные через эллиптическую функцию Вейерштрасса и эллиптический синус. С помощью обобщенного метода простейших уравнений найдены точные решения уравнения в виде уединенных волн при произвольном коэффициенте отражения. Сформулирована математическая модель, учитывающая периодические граничные условия. На регулярной сетке построено численное решение с использованием псевдоспектрального метода. Проведена верификация программного кода численного решения задачи путем сравнения полученных численного и аналитического решений в виде уединенных волн. С учетом ограничений на параметры модели исследована зависимость погрешности от шага по пространственной переменной. Построены и проанализированы графики аналитического и численного решений.
考普-纽威尔方程概括描述的孤子波分析和数值模拟
研究光纤中脉冲的传播,由考帕-纽威尔方程概括描述,考虑到任意反射系数。使用流动波的变量,coop - newell的广义方程,简化为与物质和虚幻部分相对应的非线性微分方程系统。我们已经找到了匹配方程的条件。固定n = 1方程的精确解是通过韦尔斯特拉斯椭圆函数和椭圆正弦表示的。通过概括最简单方程的方法,在任意反射系数下找到了孤子波的精确解。一种考虑周期性边界条件的数学模型已经形成。在正则网格中,使用伪光谱法构建了数值解决方案。通过比较以孤子波的形式产生的数值解和分析解决方案,对任务的编程代码进行了验证。考虑到模型参数的限制,研究了误差与空间变量步骤的关系。构建和分析分析分析和数字解决方案的图表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信