Using a Sensor Network to Localize a Source under Spatially Correlated Shadowing

J. T. Flåm, G. Kraidy, Daniel J. Ryan
{"title":"Using a Sensor Network to Localize a Source under Spatially Correlated Shadowing","authors":"J. T. Flåm, G. Kraidy, Daniel J. Ryan","doi":"10.1109/VETECS.2010.5493640","DOIUrl":null,"url":null,"abstract":"This paper considers the use of a sensor network to estimate the position of a transmitting radio based on the received signal strength at the sensors. A generic path loss model which includes the effects of spatially correlated shadowing is assumed. A weighted likelihood (WL) estimator is proposed, which can be seen as a simplified minimum mean square error (MMSE) estimator. This estimator can be used for localizing a source in a static scenario or it can provide the initial position estimate of a tracking algorithm. The performance of the WL estimator is simulated, and robustness to erroneous assumptions about path loss exponent, shadowing variance and correlation distance is demonstrated.","PeriodicalId":325246,"journal":{"name":"2010 IEEE 71st Vehicular Technology Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 71st Vehicular Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VETECS.2010.5493640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper considers the use of a sensor network to estimate the position of a transmitting radio based on the received signal strength at the sensors. A generic path loss model which includes the effects of spatially correlated shadowing is assumed. A weighted likelihood (WL) estimator is proposed, which can be seen as a simplified minimum mean square error (MMSE) estimator. This estimator can be used for localizing a source in a static scenario or it can provide the initial position estimate of a tracking algorithm. The performance of the WL estimator is simulated, and robustness to erroneous assumptions about path loss exponent, shadowing variance and correlation distance is demonstrated.
利用传感器网络在空间相关阴影下定位源
本文考虑利用传感器网络,根据传感器处接收到的信号强度来估计发射无线电的位置。假设了包含空间相关阴影效应的一般路径损失模型。提出了一种加权似然估计器,它可以看作是一种简化的最小均方误差估计器。该估计器可用于定位静态场景中的源,也可提供跟踪算法的初始位置估计。仿真了WL估计器的性能,证明了WL估计器对路径损失指数、阴影方差和相关距离等错误假设的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信