Constructing a new algorithm for high average utility Itemsets mining

N. Phuong, Nguyen Duc Duy
{"title":"Constructing a new algorithm for high average utility Itemsets mining","authors":"N. Phuong, Nguyen Duc Duy","doi":"10.1109/ICSSE.2017.8030880","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a mining algorithm for average-utility itemsets (EHAUI-Tree) based on improving HUUI-Tree algorithm to apply for adding new database transactions without restart. At first, the value of updated data is calculated. Then, itemsets which make changes will be calculated and updated depending upon the updated data value and the previous High Average-utility Upper-bound (HAUUB). This algorithm uses the downward closure property of an average-utility itemset and an index table structure. In addition, a data structure for itemsets is proposed to minimize memory usage and maximize calculating efficiency. The experimental result shows that EHAUI-Tree is more effective than HAUI-Tree when adding new transactions for the previous database. The method applies the downward closure properties of HAUUB Itemset and Index Table. Furthermore, the Bit-Array-structure itemset is also proposed to reduce using memory and calculate more effectively. The result of this algorithm is better than HAUI-Tree on updating new transactions.","PeriodicalId":296191,"journal":{"name":"2017 International Conference on System Science and Engineering (ICSSE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2017.8030880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a mining algorithm for average-utility itemsets (EHAUI-Tree) based on improving HUUI-Tree algorithm to apply for adding new database transactions without restart. At first, the value of updated data is calculated. Then, itemsets which make changes will be calculated and updated depending upon the updated data value and the previous High Average-utility Upper-bound (HAUUB). This algorithm uses the downward closure property of an average-utility itemset and an index table structure. In addition, a data structure for itemsets is proposed to minimize memory usage and maximize calculating efficiency. The experimental result shows that EHAUI-Tree is more effective than HAUI-Tree when adding new transactions for the previous database. The method applies the downward closure properties of HAUUB Itemset and Index Table. Furthermore, the Bit-Array-structure itemset is also proposed to reduce using memory and calculate more effectively. The result of this algorithm is better than HAUI-Tree on updating new transactions.
构建一种高平均效用项集挖掘新算法
本文提出了一种基于改进HUUI-Tree算法的平均效用项集挖掘算法(EHAUI-Tree),用于在不重启的情况下增加新的数据库事务。首先,计算更新后的数据值。然后,将根据更新的数据值和以前的高平均效用上限(HAUUB)计算和更新进行更改的项集。该算法使用平均实用程序项集的向下闭包属性和索引表结构。此外,提出了一种项目集的数据结构,使内存占用最小化,计算效率最大化。实验结果表明,EHAUI-Tree在为旧数据库添加新事务时比HAUI-Tree更有效。该方法应用HAUUB项目集和索引表的向下闭包属性。此外,还提出了位数组结构的项集,以减少内存的使用,提高计算效率。该算法在更新新事务方面优于hai - tree算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信