The Study on the Action Mechanism of the Jinyingzi (Rosae Laevigatae Fructus)–Qianshi (Euryales Semen) Couplet Herbs on Membranous Nephropathy Based on Network Pharmacology

Haoyi Tian, Yun Tian
{"title":"The Study on the Action Mechanism of the Jinyingzi (Rosae Laevigatae Fructus)–Qianshi (Euryales Semen) Couplet Herbs on Membranous Nephropathy Based on Network Pharmacology","authors":"Haoyi Tian, Yun Tian","doi":"10.1055/s-0042-1757458","DOIUrl":null,"url":null,"abstract":"\n Objective Our objective was to explore the action mechanism of the Jinyingzi (Rosae Laevigatae Fructus)–Qianshi (Euryales Semen) couplet herbs in the treatment of membranous nephropathy (MN) based on network pharmacology.\n Methods The active ingredients and targets of Jinyingzi (Rosae Laevigatae Fructus) and Qianshi (Euryales Semen) were screened by systematic pharmacology database and analysis platform. Online Human Mendelian Genetic database and GeneCards database were used to retrieve MN-related targets. The active ingredient-related targets and MN disease targets were introduced into Venny 2.1, and Wayne diagram was drawn. The intersection targets were the potential targets of the Jinyingzi (Rosae Laevigatae Fructus)–Qianshi (Euryales Semen) couplet herbs in the treatment of MN. The protein interaction network of potential targets was constructed, and the core targets were screened with String platform. Metascape platform was used for functional enrichment analysis of gene ontology (GO) and pathway enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG). The “herb-active ingredient-target-pathway” networks were drawn by using Cytoscape software, and the key components, targets, and signaling pathways were screened.\n Results A total of 8 active ingredients and 193 related targets in Jinyingzi (Rosae Laevigatae Fructus) and Qianshi (Euryales Semen) were screened out; a total of 1,621 targets of MN disease and 105 potential targets for the treatment of MN were obtained in the treatment with Jinyingzi (Rosae Laevigatae Fructus)–Qianshi (Euryales Semen) couplet herbs; 40 core targets were screened by protein–protein interaction network topology analysis; a total of 1,978 results were obtained by GO function enrichment analysis, and 206 signal pathways were obtained by KEGG pathway enrichment analysis and screening. The network topology analysis of “herb-active ingredient-target-pathway” showed that the key components included quercetin, kaempferol, β-sitosterol, etc.; the key targets included protein kinase Bα (AKT), mitogen-activated protein kinase 1 (MAPK1), B-cell lymphoma-2 (BCL2), prostaglandin-endoperoxide synthase 2 (PTGS2), etc.; the key pathways included advanced glycation end product/receptor of AGE signaling pathway, phosphatidyl inositol 3-kinase (PI3K)/AKT signaling pathway, MAPK signaling pathway, hypoxia-inducible factor-1 signaling pathway, Ras signaling pathway, nuclear factor kappa-B (NF-κB) signaling pathway, Toll-like receptors signaling pathway, p53 signaling pathway and vascular endothelial growth factor signaling pathway in the late stage of diabetic complications.\n Conclusion The Jinyingzi (Rosae Laevigatae Fructus)–Qianshi (Euryales Semen) couplet herbs can regulate PI3K/AKT, MAPK, NF-κB signaling pathways in MN by targeting proteins of AKT1, MAPK8, PTGS2 through key components of quercetin, β-sitosterol, and kaempferol, so as to inhibit the overexpression of inflammatory factors in renal tissues, regulate inflammatory response, and improve renal function.","PeriodicalId":204577,"journal":{"name":"Chinese medicine and natural products","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese medicine and natural products","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1757458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective Our objective was to explore the action mechanism of the Jinyingzi (Rosae Laevigatae Fructus)–Qianshi (Euryales Semen) couplet herbs in the treatment of membranous nephropathy (MN) based on network pharmacology. Methods The active ingredients and targets of Jinyingzi (Rosae Laevigatae Fructus) and Qianshi (Euryales Semen) were screened by systematic pharmacology database and analysis platform. Online Human Mendelian Genetic database and GeneCards database were used to retrieve MN-related targets. The active ingredient-related targets and MN disease targets were introduced into Venny 2.1, and Wayne diagram was drawn. The intersection targets were the potential targets of the Jinyingzi (Rosae Laevigatae Fructus)–Qianshi (Euryales Semen) couplet herbs in the treatment of MN. The protein interaction network of potential targets was constructed, and the core targets were screened with String platform. Metascape platform was used for functional enrichment analysis of gene ontology (GO) and pathway enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG). The “herb-active ingredient-target-pathway” networks were drawn by using Cytoscape software, and the key components, targets, and signaling pathways were screened. Results A total of 8 active ingredients and 193 related targets in Jinyingzi (Rosae Laevigatae Fructus) and Qianshi (Euryales Semen) were screened out; a total of 1,621 targets of MN disease and 105 potential targets for the treatment of MN were obtained in the treatment with Jinyingzi (Rosae Laevigatae Fructus)–Qianshi (Euryales Semen) couplet herbs; 40 core targets were screened by protein–protein interaction network topology analysis; a total of 1,978 results were obtained by GO function enrichment analysis, and 206 signal pathways were obtained by KEGG pathway enrichment analysis and screening. The network topology analysis of “herb-active ingredient-target-pathway” showed that the key components included quercetin, kaempferol, β-sitosterol, etc.; the key targets included protein kinase Bα (AKT), mitogen-activated protein kinase 1 (MAPK1), B-cell lymphoma-2 (BCL2), prostaglandin-endoperoxide synthase 2 (PTGS2), etc.; the key pathways included advanced glycation end product/receptor of AGE signaling pathway, phosphatidyl inositol 3-kinase (PI3K)/AKT signaling pathway, MAPK signaling pathway, hypoxia-inducible factor-1 signaling pathway, Ras signaling pathway, nuclear factor kappa-B (NF-κB) signaling pathway, Toll-like receptors signaling pathway, p53 signaling pathway and vascular endothelial growth factor signaling pathway in the late stage of diabetic complications. Conclusion The Jinyingzi (Rosae Laevigatae Fructus)–Qianshi (Euryales Semen) couplet herbs can regulate PI3K/AKT, MAPK, NF-κB signaling pathways in MN by targeting proteins of AKT1, MAPK8, PTGS2 through key components of quercetin, β-sitosterol, and kaempferol, so as to inhibit the overexpression of inflammatory factors in renal tissues, regulate inflammatory response, and improve renal function.
基于网络药理学的金樱子-千石对膜性肾病作用机制研究
目的以网络药理学为基础,探讨金樱子-千石联药治疗膜性肾病的作用机制。方法利用系统药理学数据库和分析平台对金樱子和芡实的有效成分和靶点进行筛选。利用在线人类孟德尔遗传数据库和GeneCards数据库检索mn相关靶点。在Venny 2.1中引入活性成分相关靶点和MN疾病靶点,绘制Wayne图。交叉靶点为金迎子-千石联药治疗MN的潜在靶点。构建潜在靶点蛋白相互作用网络,利用String平台筛选核心靶点。Metascape平台用于基因本体(GO)的功能富集分析和京都基因与基因组百科全书(KEGG)的途径富集分析。利用Cytoscape软件绘制“草药-活性成分-靶点-通路”网络,筛选关键成分、靶点和信号通路。结果从金樱子和千石中共筛选出8种有效成分和193个相关靶点;金樱子-千石联药共获得MN病靶点1621个,潜在治疗靶点105个;通过蛋白-蛋白相互作用网络拓扑分析筛选出40个核心靶点;通过GO功能富集分析共获得1978条结果,通过KEGG通路富集分析筛选获得206条信号通路。“草药-活性成分-靶点-通路”的网络拓扑分析表明,关键成分包括槲皮素、山奈酚、β-谷甾醇等;关键靶点包括蛋白激酶Bα (AKT)、丝裂原活化蛋白激酶1 (MAPK1)、b细胞淋巴瘤-2 (BCL2)、前列腺素内过氧化物合成酶2 (PTGS2)等;糖尿病并发症晚期的关键通路包括AGE晚期糖基化终产物/受体信号通路、磷脂酰肌醇3-激酶(PI3K)/AKT信号通路、MAPK信号通路、缺氧诱导因子-1信号通路、Ras信号通路、核因子κ b (NF-κB)信号通路、toll样受体信号通路、p53信号通路和血管内皮生长因子信号通路。结论金银子-千石联药可通过槲皮素、β-谷甾醇、山奈酚等关键成分靶向AKT1、MAPK8、PTGS2蛋白,调控MN中PI3K/AKT、MAPK、NF-κB信号通路,从而抑制肾组织中炎症因子的过度表达,调节炎症反应,改善肾功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信