A study on the minimal number of particles for a simplified particle swarm optimization algorithm

Andrei Lihu, S. Holban
{"title":"A study on the minimal number of particles for a simplified particle swarm optimization algorithm","authors":"Andrei Lihu, S. Holban","doi":"10.1109/SACI.2011.5873018","DOIUrl":null,"url":null,"abstract":"Recent research on particle swarm optimization (PSO) emphasizes the need to simply this algorithm. This paper is a short study on finding the minimal number of particles in a simplified PSO. We have taken into consideration a social-only variant, Pedersen's simplified PSO, and tested it with four popular optimization benchmark functions in order to discover which is the minimal number of particles that can be used in most optimization problems.","PeriodicalId":334381,"journal":{"name":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2011.5873018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recent research on particle swarm optimization (PSO) emphasizes the need to simply this algorithm. This paper is a short study on finding the minimal number of particles in a simplified PSO. We have taken into consideration a social-only variant, Pedersen's simplified PSO, and tested it with four popular optimization benchmark functions in order to discover which is the minimal number of particles that can be used in most optimization problems.
简化粒子群优化算法的最小粒子数研究
近年来在粒子群优化(PSO)方面的研究强调了简化该算法的必要性。本文是一篇关于寻找简化粒子群中最小粒子数的简短研究。我们考虑了一个只针对社会的变体,Pedersen的简化粒子群,并用四种流行的优化基准函数对其进行测试,以发现在大多数优化问题中可以使用的最小粒子数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信