Efficient Verification of Control Systems with Neural Network Controllers

Guoqing Yang, Guangyi Qian, Pan Lv, Hong Li
{"title":"Efficient Verification of Control Systems with Neural Network Controllers","authors":"Guoqing Yang, Guangyi Qian, Pan Lv, Hong Li","doi":"10.1145/3387168.3387244","DOIUrl":null,"url":null,"abstract":"Recently, many state-of-art machine learning methods have been applied to Autonomous cyber-physical systems (CPS) which need high safe insurance. This paper develops an effective way to approximate the reachable set of a closed-loop discrete linear dynamic system with a Neural network(NN) controller, whose activation function is Rectified Linear Unit(ReLU). In our method, we choose SHERLOCK, a valid NN verification tool, to estimate the output set of NN and adopt initial state set partitioning to improve the total performance. The approach is evaluated on numerical examples and shows evident superiority to the method before refined.","PeriodicalId":346739,"journal":{"name":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387168.3387244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recently, many state-of-art machine learning methods have been applied to Autonomous cyber-physical systems (CPS) which need high safe insurance. This paper develops an effective way to approximate the reachable set of a closed-loop discrete linear dynamic system with a Neural network(NN) controller, whose activation function is Rectified Linear Unit(ReLU). In our method, we choose SHERLOCK, a valid NN verification tool, to estimate the output set of NN and adopt initial state set partitioning to improve the total performance. The approach is evaluated on numerical examples and shows evident superiority to the method before refined.
神经网络控制器控制系统的有效验证
近年来,许多先进的机器学习方法已被应用于对安全保障要求较高的自主网络物理系统(CPS)。提出了一种用激活函数为整流线性单元(ReLU)的神经网络控制器逼近闭环离散线性动态系统可达集的有效方法。在我们的方法中,我们选择了有效的神经网络验证工具SHERLOCK来估计神经网络的输出集,并采用初始状态集划分来提高总体性能。数值算例表明,该方法与改进前的方法相比具有明显的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信