Power Systems Voltage Stability Using Artificial Neural Network

M. Khaldi
{"title":"Power Systems Voltage Stability Using Artificial Neural Network","authors":"M. Khaldi","doi":"10.1109/ICPST.2008.4745343","DOIUrl":null,"url":null,"abstract":"The steady-state operation of maintaining voltage stability is done by switching various controllers scattered all over the network. When a contingency occurs, whether forced or unforced, the dispatcher is to alleviate the problem in a minimum time, cost, and effort. Persistent problem may lead to blackout. The dispatcher is to have the appropriate switching of controllers in terms of type, location, and size to remove the contingency and maintain voltage stability. Wrong switching may worsen the problem and that may lead to blackout. This work proposed and used an artificial neural network (ANN) to assist the dispatcher in the decision making. The ANN is used in the static voltage stability to map instantaneously a contingency to a set of controllers where the types, locations, and amount of switching are induced. The work proposes the type and architecture of the ANN to be used and the training data size.","PeriodicalId":107016,"journal":{"name":"2008 Joint International Conference on Power System Technology and IEEE Power India Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Joint International Conference on Power System Technology and IEEE Power India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPST.2008.4745343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The steady-state operation of maintaining voltage stability is done by switching various controllers scattered all over the network. When a contingency occurs, whether forced or unforced, the dispatcher is to alleviate the problem in a minimum time, cost, and effort. Persistent problem may lead to blackout. The dispatcher is to have the appropriate switching of controllers in terms of type, location, and size to remove the contingency and maintain voltage stability. Wrong switching may worsen the problem and that may lead to blackout. This work proposed and used an artificial neural network (ANN) to assist the dispatcher in the decision making. The ANN is used in the static voltage stability to map instantaneously a contingency to a set of controllers where the types, locations, and amount of switching are induced. The work proposes the type and architecture of the ANN to be used and the training data size.
基于人工神经网络的电力系统电压稳定
维持电压稳定的稳态运行是通过切换分散在电网中的各种控制器来完成的。当意外事件发生时,无论是强制的还是非强制的,调度员都要以最小的时间、成本和努力来缓解问题。持续的问题可能导致停电。调度器应根据控制器的类型、位置和大小进行适当的切换,以消除偶然性,保持电压稳定。错误的开关可能会使问题恶化,并可能导致停电。本文提出并利用人工神经网络(ANN)辅助调度员进行决策。在静态电压稳定性中,人工神经网络用于将突发事件即时映射到一组控制器,其中感应开关的类型、位置和数量。提出了拟使用的人工神经网络的类型和体系结构以及训练数据的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信