E. A. Dijkstra, J. Holsheimer, W. Olthuis, P. Bergveld
{"title":"Ultrasonic distance detection for a closed-loop spinal cord stimulation system","authors":"E. A. Dijkstra, J. Holsheimer, W. Olthuis, P. Bergveld","doi":"10.1109/IEMBS.1997.758723","DOIUrl":null,"url":null,"abstract":"When stimulating the spinal cord at a constant strength, the current density in the spinal cord and thus the effects on chronic, intractable pain and vascular insufficiency will change with body position, due to the varying separation of the spinal cord and the stimulating electrode. The current density in the spinal cord has to remain between the perception and discomfort threshold (stimulation window) for a good therapeutic effect, i.e. that the patient does not suffer from pain. The stimulation window is very small. In current SCS systems the stimulus applied to the electrode is set at a constant value. A major improvement could be achieved when the distance between stimulation electrode and spinal cord could be measured and used to control the stimulus amplitude in a closed-loop system. An ultrasonic piezoelectric transducer was chosen to measure the distance between the electrode and the spinal cord.","PeriodicalId":342750,"journal":{"name":"Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1997.758723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
When stimulating the spinal cord at a constant strength, the current density in the spinal cord and thus the effects on chronic, intractable pain and vascular insufficiency will change with body position, due to the varying separation of the spinal cord and the stimulating electrode. The current density in the spinal cord has to remain between the perception and discomfort threshold (stimulation window) for a good therapeutic effect, i.e. that the patient does not suffer from pain. The stimulation window is very small. In current SCS systems the stimulus applied to the electrode is set at a constant value. A major improvement could be achieved when the distance between stimulation electrode and spinal cord could be measured and used to control the stimulus amplitude in a closed-loop system. An ultrasonic piezoelectric transducer was chosen to measure the distance between the electrode and the spinal cord.