An FPGA-cluster-accelerated match engine for content-based image retrieval

Chen Liang, Chen-Mie Wu, Xuegong Zhou, Wei Cao, Shengye Wang, Lingli Wang
{"title":"An FPGA-cluster-accelerated match engine for content-based image retrieval","authors":"Chen Liang, Chen-Mie Wu, Xuegong Zhou, Wei Cao, Shengye Wang, Lingli Wang","doi":"10.1109/FPT.2013.6718404","DOIUrl":null,"url":null,"abstract":"In this paper, a high-performance match engine for content-based image retrieval is proposed. Highly customized floating-point(FP) units are designed, to provide the dynamic range and precision of standard FP units, but with considerably less area than standard FP units. Match calculation arrays with various architectures and scales are designed and evaluated. An CBIR system is built on a 12-FPGA cluster. Inter-FPGA connections are based on standard 10-Gigabyte Ethernet. The whole FPGA cluster can compare a query image against 150 million library images within 10 seconds, basing on detailed local features. Compared with the Intel Xeon 5650 server based solution, our implementation is 11.35 times faster and 34.81 times more power efficient.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a high-performance match engine for content-based image retrieval is proposed. Highly customized floating-point(FP) units are designed, to provide the dynamic range and precision of standard FP units, but with considerably less area than standard FP units. Match calculation arrays with various architectures and scales are designed and evaluated. An CBIR system is built on a 12-FPGA cluster. Inter-FPGA connections are based on standard 10-Gigabyte Ethernet. The whole FPGA cluster can compare a query image against 150 million library images within 10 seconds, basing on detailed local features. Compared with the Intel Xeon 5650 server based solution, our implementation is 11.35 times faster and 34.81 times more power efficient.
基于内容的图像检索的fpga集群加速匹配引擎
本文提出了一种基于内容的图像检索的高性能匹配引擎。设计了高度定制的浮点(FP)单元,以提供标准FP单元的动态范围和精度,但面积比标准FP单元小得多。设计并评估了不同结构和规模的匹配计算阵列。一个CBIR系统建立在一个12 fpga集群上。fpga之间的连接基于标准的10gb以太网。基于详细的局部特征,整个FPGA集群可以在10秒内将查询图像与1.5亿个库图像进行比较。与基于英特尔至强5650服务器的解决方案相比,我们的实现速度快11.35倍,能效高34.81倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信