Analysis of ElectroGlottoGraph signal using Ensemble Empirical Mode Decomposition

Rajib Sharma, K. Ramesh, S. Prasanna
{"title":"Analysis of ElectroGlottoGraph signal using Ensemble Empirical Mode Decomposition","authors":"Rajib Sharma, K. Ramesh, S. Prasanna","doi":"10.1109/INDICON.2014.7030506","DOIUrl":null,"url":null,"abstract":"The analysis of various components of the Electroglottograph (EGG) signal, obtained after Ensemble Empirical Mode Decomposition (EEMD) is the primary objective of this paper. The ability of EEMD to detect intermittent high frequency data embedded in the data of lower frequency is exploited to segregate the Epoch locations and the Periodic nature of EGG signal. The dyadic filterbank property of EEMD segregates the EGG signal into intrinsic mode functions (IMFs), in decreasing order of frequency. Hilbert envelope (HE) and moving average filter are used to determine the epoch locations and compute the pitch frequency from the first IMF, whereas pitch frequency is computed directly from latter IMFs. Block Processing of the EGG data is avoided and the results are evaluated with respect to the differential EGG (dEGG) signal.","PeriodicalId":409794,"journal":{"name":"2014 Annual IEEE India Conference (INDICON)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2014.7030506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The analysis of various components of the Electroglottograph (EGG) signal, obtained after Ensemble Empirical Mode Decomposition (EEMD) is the primary objective of this paper. The ability of EEMD to detect intermittent high frequency data embedded in the data of lower frequency is exploited to segregate the Epoch locations and the Periodic nature of EGG signal. The dyadic filterbank property of EEMD segregates the EGG signal into intrinsic mode functions (IMFs), in decreasing order of frequency. Hilbert envelope (HE) and moving average filter are used to determine the epoch locations and compute the pitch frequency from the first IMF, whereas pitch frequency is computed directly from latter IMFs. Block Processing of the EGG data is avoided and the results are evaluated with respect to the differential EGG (dEGG) signal.
基于集成经验模态分解的声门电信号分析
本文的主要目的是分析经集成经验模态分解(EEMD)得到的声门电信号的各成分。利用EEMD检测嵌入在低频数据中的间歇性高频数据的能力来分离Epoch位置和EGG信号的周期性。EEMD的二进滤波器组特性将EGG信号按频率递减的顺序分离成内禀模态函数(IMFs)。希尔伯特包络(HE)和移动平均滤波器用于确定历元位置并从第一个IMF计算基音频率,而基音频率直接从后一个IMF计算。避免了对EGG数据的块处理,并根据差分EGG (dEGG)信号对结果进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信