Neural control for NOx emissions in a sludge combustion process

R. Carrasco, E. Sánchez, R. Ruiz-Cruz, C. Cadet
{"title":"Neural control for NOx emissions in a sludge combustion process","authors":"R. Carrasco, E. Sánchez, R. Ruiz-Cruz, C. Cadet","doi":"10.1109/WAC.2014.6936009","DOIUrl":null,"url":null,"abstract":"In this paper, a discrete-time neural control scheme to regulate carbon monoxide (CO) and nitrogen oxides (NOx) emissions for a fluidized bed sludge incinerator is proposed. Carbon monoxide emissions are reduce by oxygen regulation in the incinerator; nevertheless nitrogen oxides emissions are difficult to control because the sludge composition varies continuously. This scheme ensures carbon monoxide and nitrogen oxides regulation without decreasing combustion efficiency. In order to obtain the sludge combustion model, it is proposed to use a recurrent high order neural network (RHONN), which is trained with an extended Kalman filter (EKF) algorithm. The proposed neural controller performance is illustrated via simulations.","PeriodicalId":196519,"journal":{"name":"2014 World Automation Congress (WAC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 World Automation Congress (WAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAC.2014.6936009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a discrete-time neural control scheme to regulate carbon monoxide (CO) and nitrogen oxides (NOx) emissions for a fluidized bed sludge incinerator is proposed. Carbon monoxide emissions are reduce by oxygen regulation in the incinerator; nevertheless nitrogen oxides emissions are difficult to control because the sludge composition varies continuously. This scheme ensures carbon monoxide and nitrogen oxides regulation without decreasing combustion efficiency. In order to obtain the sludge combustion model, it is proposed to use a recurrent high order neural network (RHONN), which is trained with an extended Kalman filter (EKF) algorithm. The proposed neural controller performance is illustrated via simulations.
污泥燃烧过程中NOx排放的神经控制
本文提出了一种离散时间神经控制方案来调节流化床污泥焚烧炉的一氧化碳(CO)和氮氧化物(NOx)排放。通过调节焚化炉内的氧气来减少一氧化碳的排放;然而,由于污泥成分不断变化,氮氧化物的排放难以控制。该方案在不降低燃烧效率的情况下保证了一氧化碳和氮氧化物的调节。为了获得污泥燃烧模型,提出了采用扩展卡尔曼滤波(EKF)算法训练的循环高阶神经网络(RHONN)。通过仿真验证了所提神经控制器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信