Deep neural networks for terrain recognition task

P. Kozłowski, K. Walas
{"title":"Deep neural networks for terrain recognition task","authors":"P. Kozłowski, K. Walas","doi":"10.23919/URSI.2018.8406736","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem of using artificial, deep neural networks in terrain recognition task based on data from vision sensor. Information about a terrain class is valuable for mobile robots, as it can improve their motion control algorithm performance through the use of information about surface properties. In this work RGB-D sensor was used for providing vision data, which comprise a depth map and infrared image in addition to the standard RGB data. Our own model of the artificial neural network is presented in this work. It was trained using the latest machine learning libraries. The results of this work demonstrate the performance of artificial neural networks in the terrain recognition task and give some hints how to improve classification in the future.","PeriodicalId":362184,"journal":{"name":"2018 Baltic URSI Symposium (URSI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Baltic URSI Symposium (URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSI.2018.8406736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper focuses on the problem of using artificial, deep neural networks in terrain recognition task based on data from vision sensor. Information about a terrain class is valuable for mobile robots, as it can improve their motion control algorithm performance through the use of information about surface properties. In this work RGB-D sensor was used for providing vision data, which comprise a depth map and infrared image in addition to the standard RGB data. Our own model of the artificial neural network is presented in this work. It was trained using the latest machine learning libraries. The results of this work demonstrate the performance of artificial neural networks in the terrain recognition task and give some hints how to improve classification in the future.
基于深度神经网络的地形识别
本文主要研究基于视觉传感器数据的地形识别任务中人工深度神经网络的应用问题。关于地形类的信息对于移动机器人是有价值的,因为它可以通过使用关于表面属性的信息来提高它们的运动控制算法的性能。在这项工作中,RGB- d传感器用于提供视觉数据,除了标准的RGB数据外,还包括深度图和红外图像。在这项工作中提出了我们自己的人工神经网络模型。它是使用最新的机器学习库进行训练的。本文的研究结果证明了人工神经网络在地形识别任务中的性能,并为未来如何改进分类提供了一些提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信