Optimizing condition based maintenance decisions

A. Jardine
{"title":"Optimizing condition based maintenance decisions","authors":"A. Jardine","doi":"10.1109/RAMS.2002.981625","DOIUrl":null,"url":null,"abstract":"The paper first reviews common strategies for implementing smart condition monitoring decisions such as trend analysis that is rooted in statistical process control, expert systems, and the use of neural networks. The paper then focuses on current industry-driven research that employs proportional hazards modeling to identify the key risk factors that should be used to identify the health of equipment from amongst those signals that are obtained during condition monitoring. Economic considerations are then blended with the risk estimate to establish optimal condition-based maintenance (CBM) decisions.","PeriodicalId":395613,"journal":{"name":"Annual Reliability and Maintainability Symposium. 2002 Proceedings (Cat. No.02CH37318)","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reliability and Maintainability Symposium. 2002 Proceedings (Cat. No.02CH37318)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.2002.981625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

The paper first reviews common strategies for implementing smart condition monitoring decisions such as trend analysis that is rooted in statistical process control, expert systems, and the use of neural networks. The paper then focuses on current industry-driven research that employs proportional hazards modeling to identify the key risk factors that should be used to identify the health of equipment from amongst those signals that are obtained during condition monitoring. Economic considerations are then blended with the risk estimate to establish optimal condition-based maintenance (CBM) decisions.
优化基于条件的维护决策
本文首先回顾了实现智能状态监测决策的常用策略,如基于统计过程控制的趋势分析、专家系统和神经网络的使用。然后,本文将重点放在当前行业驱动的研究上,该研究采用比例危害模型来识别关键风险因素,这些因素应用于从状态监测期间获得的信号中识别设备的健康状况。然后将经济考虑与风险评估相结合,以建立最佳的基于状态的维护(CBM)决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信