Estimation of PSIJ in CMOS inverters via Knowledge Based Artificial Neural Networks

Ahsan Javaid, R. Achar, Jai Narayan Tripathi
{"title":"Estimation of PSIJ in CMOS inverters via Knowledge Based Artificial Neural Networks","authors":"Ahsan Javaid, R. Achar, Jai Narayan Tripathi","doi":"10.1109/SPI54345.2022.9874942","DOIUrl":null,"url":null,"abstract":"In this paper, a knowledge based artificial neural network is developed for predicting jitter for a CMOS inverter in the presence of power supply noise (PSN). The proposed ANN provides for efficient training in an hybrid approach using input data extracted from both analytical closed-form expressions as well as a circuit simulator. The proposed ANN demonstrates a reasonably accurate prediction of PSIJ with results that closely match with that from directly using a circuit simulator (ADS) for a case study with 50nm CMOS technology.","PeriodicalId":285253,"journal":{"name":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI54345.2022.9874942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a knowledge based artificial neural network is developed for predicting jitter for a CMOS inverter in the presence of power supply noise (PSN). The proposed ANN provides for efficient training in an hybrid approach using input data extracted from both analytical closed-form expressions as well as a circuit simulator. The proposed ANN demonstrates a reasonably accurate prediction of PSIJ with results that closely match with that from directly using a circuit simulator (ADS) for a case study with 50nm CMOS technology.
基于知识的人工神经网络对CMOS逆变器PSIJ的估计
本文提出了一种基于知识的人工神经网络,用于预测电源噪声(PSN)存在时CMOS逆变器的抖动。所提出的人工神经网络提供了一种混合方法,使用从解析封闭形式表达式和电路模拟器中提取的输入数据进行有效的训练。所提出的人工神经网络能够相当准确地预测PSIJ,其结果与直接使用电路模拟器(ADS)进行50nm CMOS技术案例研究的结果非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信