Multi-window recursive adaptive neural filters

A. Burian, J. Saarinen, P. Kuosmanen
{"title":"Multi-window recursive adaptive neural filters","authors":"A. Burian, J. Saarinen, P. Kuosmanen","doi":"10.1109/ICECS.2001.957674","DOIUrl":null,"url":null,"abstract":"Generalized adaptive neural filters are a class of nonlinear adaptive filters that includes stack filters as a subset. We further extend this class by using a multi-window approach. In this way we obtain a parallel recursive filtering operation and make better use of the implicit parallelism of the neural network architecture. The proposed neural network structure uses shared weight architecture for efficient implementation. Experimental results in actual image processing illustrate the efficiency of the approach.","PeriodicalId":141392,"journal":{"name":"ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2001.957674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generalized adaptive neural filters are a class of nonlinear adaptive filters that includes stack filters as a subset. We further extend this class by using a multi-window approach. In this way we obtain a parallel recursive filtering operation and make better use of the implicit parallelism of the neural network architecture. The proposed neural network structure uses shared weight architecture for efficient implementation. Experimental results in actual image processing illustrate the efficiency of the approach.
多窗口递归自适应神经滤波器
广义自适应神经滤波器是一类非线性自适应滤波器,其子集包括堆栈滤波器。我们通过使用多窗口方法进一步扩展这个类。这样得到了一种并行递归滤波运算,更好地利用了神经网络结构的隐式并行性。本文提出的神经网络结构采用共享权值架构,实现效率高。实际图像处理的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信