AR.Drone UAV control parameters tuning based on particle swarm optimization algorithm

T. Mac, C. Copot, Trung Tran Duc, R. Keyser
{"title":"AR.Drone UAV control parameters tuning based on particle swarm optimization algorithm","authors":"T. Mac, C. Copot, Trung Tran Duc, R. Keyser","doi":"10.1109/AQTR.2016.7501380","DOIUrl":null,"url":null,"abstract":"In this paper, a proposed particle swarm optimization called multi-objective particle swarm optimization (MOPSO) with an accelerated update methodology is employed to tune Proportional-Integral-Derivative (PID) controller for an AR.Drone quadrotor. The proposed approach is to modify the velocity formula of the general PSO systems in order for improving the searching efficiency and actual execution time. Three PID control parameters, i.e., the proportional gain Kp, integral gain K; and derivative gain Kd are required to form a parameter vector which is considered as a particle of PSO. To derive the optimal PID parameters for the Ar.Drone, the modified update method is employed to move the positions of all particles in the population. In the meanwhile, multi-objective functions defined for PID controller optimization problems are minimized. The results verify that the proposed MOPSO is able to perform appropriately in Ar.Drone control system.","PeriodicalId":110627,"journal":{"name":"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2016.7501380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this paper, a proposed particle swarm optimization called multi-objective particle swarm optimization (MOPSO) with an accelerated update methodology is employed to tune Proportional-Integral-Derivative (PID) controller for an AR.Drone quadrotor. The proposed approach is to modify the velocity formula of the general PSO systems in order for improving the searching efficiency and actual execution time. Three PID control parameters, i.e., the proportional gain Kp, integral gain K; and derivative gain Kd are required to form a parameter vector which is considered as a particle of PSO. To derive the optimal PID parameters for the Ar.Drone, the modified update method is employed to move the positions of all particles in the population. In the meanwhile, multi-objective functions defined for PID controller optimization problems are minimized. The results verify that the proposed MOPSO is able to perform appropriately in Ar.Drone control system.
基于粒子群优化算法的无人机控制参数整定
本文提出了一种基于加速更新方法的多目标粒子群优化(MOPSO)算法,对四旋翼无人机的比例-积分-导数(PID)控制器进行了整定。该方法是对一般粒子群系统的速度公式进行修正,以提高搜索效率和实际执行时间。三个PID控制参数,即比例增益Kp,积分增益K;和导数增益Kd构成一个参数向量,将其视为粒子群的一个粒子。为了得到Ar.Drone的最优PID参数,采用改进的更新方法对种群中所有粒子的位置进行移动。同时,对PID控制器优化问题所定义的多目标函数进行了最小化。实验结果验证了所提出的MOPSO在无人机控制系统中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信