Technology Positioning for mm Wave Applications: 130/90nm SiGe BiCMOS vs. 28nm RFCMOS

A. Joseph, V. Jain, S. N. Ong, R. Wolf, S. Lim, Jagar Singh
{"title":"Technology Positioning for mm Wave Applications: 130/90nm SiGe BiCMOS vs. 28nm RFCMOS","authors":"A. Joseph, V. Jain, S. N. Ong, R. Wolf, S. Lim, Jagar Singh","doi":"10.1109/BCICTS.2018.8551002","DOIUrl":null,"url":null,"abstract":"Over the last few decades, SiGe BiCMOS has survived the continued onslaught of RF-CMOS technologies. SiGe HBT invented in late 1980's and later introduced as a BiCMOS technology served as a sweet spot in the emerging RF market, thanks to the SiGe HBT's higher power and better noise characteristics. It did not take very long for RFCMOS scaling roadmap to catch up to SiGe HBT performance levels and displace it from high-volume market segment like RF cellular transceivers. Now with the advent of 5G millimeter-wave (mmWave) applications demanding higher power and lower noise for the front-end, will SiGe BiCMOS once again come back to the forefront to address this market? In this paper we will take a closer look at some of the key aspects of a 130 / 90nm SiGe BiCMOS relative to a 28nm bulk RFCMOS technology for addressing mmWave front-end as well as potential opportunities that lie ahead with scaling.","PeriodicalId":272808,"journal":{"name":"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCICTS.2018.8551002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Over the last few decades, SiGe BiCMOS has survived the continued onslaught of RF-CMOS technologies. SiGe HBT invented in late 1980's and later introduced as a BiCMOS technology served as a sweet spot in the emerging RF market, thanks to the SiGe HBT's higher power and better noise characteristics. It did not take very long for RFCMOS scaling roadmap to catch up to SiGe HBT performance levels and displace it from high-volume market segment like RF cellular transceivers. Now with the advent of 5G millimeter-wave (mmWave) applications demanding higher power and lower noise for the front-end, will SiGe BiCMOS once again come back to the forefront to address this market? In this paper we will take a closer look at some of the key aspects of a 130 / 90nm SiGe BiCMOS relative to a 28nm bulk RFCMOS technology for addressing mmWave front-end as well as potential opportunities that lie ahead with scaling.
毫米波应用的技术定位:130/90nm SiGe BiCMOS与28nm RFCMOS
在过去的几十年里,SiGe BiCMOS经受住了RF-CMOS技术的持续冲击。SiGe HBT发明于20世纪80年代末,后来作为BiCMOS技术引入,由于SiGe HBT具有更高的功率和更好的噪声特性,因此在新兴的RF市场中发挥了最佳作用。RFCMOS的扩展路线图没有花很长时间就赶上了SiGe HBT的性能水平,并取代了RF蜂窝收发器等大批量细分市场。现在,随着5G毫米波(mmWave)应用的出现,对前端要求更高的功率和更低的噪声,SiGe BiCMOS是否会再次回到最前沿,以应对这一市场?在本文中,我们将仔细研究130 / 90nm SiGe BiCMOS相对于28nm块体RFCMOS技术的一些关键方面,以解决毫米波前端问题,以及未来扩展的潜在机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信