A Flexible Rule-Based Approach to Learn Medical English-Chinese OOV Term Translations from the Web

Jian Qu, T. Theeramunkong, Nguyen Le Ming, Akira Shimazu, C. Nattee, P. Aimmanee
{"title":"A Flexible Rule-Based Approach to Learn Medical English-Chinese OOV Term Translations from the Web","authors":"Jian Qu, T. Theeramunkong, Nguyen Le Ming, Akira Shimazu, C. Nattee, P. Aimmanee","doi":"10.1142/S1793840612400132","DOIUrl":null,"url":null,"abstract":"Out-of-vocabulary (OOV) terms, which do not exist in most dictionaries, usually cause failures in a cross language information retrieval (CLIR) system. Most existing approaches achieve a high performance when using web-mining to translate name entity type OOV terms. However, these methods gain a low performance when they are applied to medical OOV terms because they contain non-Chinese characters which are normally ignored by existing approaches, such as symbols, Roman alphabets and Arabic numbers. This paper presents a flexible rule-based approach towards the acquisition of medical OOV term translation. Our method uses a combination of a novel rule-based pattern extraction and brute force generation to identify the part of non-Chinese characters. To cope with the time-consuming task of ranking list and human extraction of OOV term translation, this paper presents a machine learning method to select correct translations automatically. In the method, twenty-one different features for each Chinese translati...","PeriodicalId":249589,"journal":{"name":"International Journal of Computer Processing of Languages","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Processing of Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793840612400132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Out-of-vocabulary (OOV) terms, which do not exist in most dictionaries, usually cause failures in a cross language information retrieval (CLIR) system. Most existing approaches achieve a high performance when using web-mining to translate name entity type OOV terms. However, these methods gain a low performance when they are applied to medical OOV terms because they contain non-Chinese characters which are normally ignored by existing approaches, such as symbols, Roman alphabets and Arabic numbers. This paper presents a flexible rule-based approach towards the acquisition of medical OOV term translation. Our method uses a combination of a novel rule-based pattern extraction and brute force generation to identify the part of non-Chinese characters. To cope with the time-consuming task of ranking list and human extraction of OOV term translation, this paper presents a machine learning method to select correct translations automatically. In the method, twenty-one different features for each Chinese translati...
一种灵活的基于规则的医学英汉OOV术语网络翻译学习方法
在跨语言信息检索(CLIR)系统中,词汇外(OOV)术语通常会导致故障,这些术语在大多数字典中都不存在。大多数现有的方法在使用web挖掘来翻译名称实体类型的OOV术语时都达到了很高的性能。然而,这些方法在医学OOV术语中包含非中文字符,这些字符通常被现有方法忽略,如符号、罗马字母和阿拉伯数字,因此这些方法在应用于医学OOV术语时性能较差。本文提出了一种灵活的基于规则的医学OOV术语翻译获取方法。我们的方法结合了一种新的基于规则的模式提取和蛮力生成来识别部分非中文字符。为了解决OOV术语翻译排序列表和人工抽取耗时的问题,本文提出了一种机器学习方法来自动选择正确的翻译。在该方法中,21个不同的特征为每个中文翻译…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信