Keyword Combination Extraction in Text Categorization Based on Ant Colony Optimization

Zi-jun Yu, Weigang Wu, Jing Xiao, Jun Zhang, Rui-zhang Huang, Ou Liu
{"title":"Keyword Combination Extraction in Text Categorization Based on Ant Colony Optimization","authors":"Zi-jun Yu, Weigang Wu, Jing Xiao, Jun Zhang, Rui-zhang Huang, Ou Liu","doi":"10.1109/SoCPaR.2009.90","DOIUrl":null,"url":null,"abstract":"Due to the increasing number of documents in digital form, the automated text categorization (TC) has become more and more promising in the last ten years. A TC system can automatically assign a document with the most suitable category, but the reason for such an assignment is usually unknown by users. To make the TC system be interpretable, it is necessary to select a group of keywords, or termed a keyword combination, to describe each text category. In this paper, we propose a novel algorithm, keyword combination extraction based on ant colony optimization (KCEACO), to search the optimal keyword combination of a target category. By extending the traditional feature selection techniques, an evaluation function is designed for evaluating a keyword combination. This function takes into account the relationships among different keywords. Experimental results show that KCEACO can efficiently find the optimal keyword combination from a large number of candidate combinations.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"85 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Due to the increasing number of documents in digital form, the automated text categorization (TC) has become more and more promising in the last ten years. A TC system can automatically assign a document with the most suitable category, but the reason for such an assignment is usually unknown by users. To make the TC system be interpretable, it is necessary to select a group of keywords, or termed a keyword combination, to describe each text category. In this paper, we propose a novel algorithm, keyword combination extraction based on ant colony optimization (KCEACO), to search the optimal keyword combination of a target category. By extending the traditional feature selection techniques, an evaluation function is designed for evaluating a keyword combination. This function takes into account the relationships among different keywords. Experimental results show that KCEACO can efficiently find the optimal keyword combination from a large number of candidate combinations.
基于蚁群优化的文本分类中关键字组合提取
近十年来,随着数字化文档数量的不断增加,自动文本分类(TC)得到了越来越多的应用前景。TC系统可以自动为文档分配最合适的类别,但是用户通常不知道这种分配的原因。为了使TC系统具有可解释性,有必要选择一组关键字,或称为关键字组合,来描述每个文本类别。本文提出了一种基于蚁群优化的关键字组合提取算法(KCEACO),用于搜索目标类别的最优关键字组合。通过对传统特征选择技术的扩展,设计了一个评价函数来评价关键词组合。该函数考虑了不同关键字之间的关系。实验结果表明,KCEACO能有效地从大量候选组合中找到最优关键字组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信