Time-Frequency Peak Filtering Versus Kalman Filter in the Kinematic Trajectory Estimation

D. Mikluc, M. Andric
{"title":"Time-Frequency Peak Filtering Versus Kalman Filter in the Kinematic Trajectory Estimation","authors":"D. Mikluc, M. Andric","doi":"10.23919/NTSP.2018.8524127","DOIUrl":null,"url":null,"abstract":"The kinematic trajectory of point targets with time-frequency peak filtering and Kalman filtering has been used in this paper. The comparison of the named filters is done on position estimation of several characteristic generated trajectories. Firstly, the error estimation of a point target trajectory was analysed in one dimension and then in the plane. The criterion of a root mean square error is used to compare the estimation results of the used filters. It is shown that time-frequency peak filtering can be used in the trajectory estimation in various velocity values as well as in different variances of Gaussian noise.","PeriodicalId":177579,"journal":{"name":"2018 New Trends in Signal Processing (NTSP)","volume":"31 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 New Trends in Signal Processing (NTSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/NTSP.2018.8524127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The kinematic trajectory of point targets with time-frequency peak filtering and Kalman filtering has been used in this paper. The comparison of the named filters is done on position estimation of several characteristic generated trajectories. Firstly, the error estimation of a point target trajectory was analysed in one dimension and then in the plane. The criterion of a root mean square error is used to compare the estimation results of the used filters. It is shown that time-frequency peak filtering can be used in the trajectory estimation in various velocity values as well as in different variances of Gaussian noise.
运动轨迹估计中的时频峰值滤波与卡尔曼滤波
本文采用时频峰值滤波和卡尔曼滤波对点目标的运动轨迹进行分析。对几种特征生成轨迹的位置估计进行了比较。首先从一维角度分析了点目标轨迹的误差估计,然后从平面角度分析了点目标轨迹误差估计。采用均方根误差准则对各滤波器的估计结果进行比较。结果表明,时频峰值滤波可用于各种速度值和不同高斯噪声方差下的轨迹估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信