Jiaqi Gu, Zheng Zhao, Chenghao Feng, Mingjie Liu, Ray T. Chen, D. Pan
{"title":"Towards Area-Efficient Optical Neural Networks: An FFT-based Architecture","authors":"Jiaqi Gu, Zheng Zhao, Chenghao Feng, Mingjie Liu, Ray T. Chen, D. Pan","doi":"10.1109/ASP-DAC47756.2020.9045156","DOIUrl":null,"url":null,"abstract":"As a promising neuromorphic framework, the optical neural network (ONN) demonstrates ultra-high inference speed with low energy consumption. However, the previous ONN architectures have high area overhead which limits their practicality. In this paper, we propose an area-efficient ONN architecture based on structured neural networks, leveraging optical fast Fourier transform for efficient computation. A two-phase software training flow with structured pruning is proposed to further reduce the optical component utilization. Experimental results demonstrate that the proposed architecture can achieve 2.2∼3.7× area cost improvement compared with the previous singular value decomposition-based architecture with comparable inference accuracy.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"20 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
As a promising neuromorphic framework, the optical neural network (ONN) demonstrates ultra-high inference speed with low energy consumption. However, the previous ONN architectures have high area overhead which limits their practicality. In this paper, we propose an area-efficient ONN architecture based on structured neural networks, leveraging optical fast Fourier transform for efficient computation. A two-phase software training flow with structured pruning is proposed to further reduce the optical component utilization. Experimental results demonstrate that the proposed architecture can achieve 2.2∼3.7× area cost improvement compared with the previous singular value decomposition-based architecture with comparable inference accuracy.